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ABSTRACT

Alternative computer architectures are necessary to replace the traditional

'von Neumann' computer organization in order to obtain large increases in

performance. The traditional 'von Neumann' architecture uses a timer based (e.g.,

the program counter), sequentially programmed, single processor approach to

problem solving. Today's new hardware technology allows for the utilization of

multiple processors. By programming and operating these processors in parallel, this

alternative architecture will provide for greater computing speed, improved system

reliability, enhanced software manageability, and a more cost-effective approach than

our present computing practices.
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I. INTRODUCTION

A. PROBLEM STATEMENT

Alternative computer architectures are necessary to replace the traditional

'von Neumann' computer organization in order to obtain large increases in

performance. The traditional 'von Neumann' architecture uses a timer based

(e.g., the program counter), sequentially programmed, single processor approach

to problem solving. Today's new hardware technology allows for the utilization of

multiple processors. By programming and operating these processors in parallel,

this alternative architecture will provide for greater computing speed, improved

system reliability, enhanced software manageability, and a more cost-effective

approach than our present computing practices. [Ref. 1]

Many of the advances towards parallel processing have been hardware

related, and the software to properly exploit a parallel architecture is still in the

development stages. Digital Equipment Corporation, the University of

Manchester (England), Lawrence Livermore National Laboratory, and Colorado

State University worked cooperatively beginning in 1983 to develop a

programming language for parallel numerical computation. [Ref. 2] The outcome

of this project was the programming language SISAL (Streams and Iterations in a

Single Assignment Language). The SISAL language is a functionally oriented

programming language. The primary goal of SISAL is to achieve sequential and
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parallel execution performance, depending upon the hardware architecture,

superior to programs written in conventional languages. [Ref. 2]

B. OBJECTIVE

The goal of this thesis is to determine the possibility of exploiting the

multiprocessor architecture found on a network of workstations by using the

SISAL Language. The reader will obtain a better understanding of parallel

processing by the basic review of the dataflow approach to parallel processing

provided in Chapter II. This review will introduce the use of the dataflow graph

for ease in portraying parallel processes.

This discussion will then be followed by an introduction to functional

languages in Chapter III. The use of functional languages is receiving wide

attention in the area of scientific numerical processing. One of the most

prevalent benefits of the use of functional languages is that they free the

programmer from writing explicitly parallel code. A functional language is

capable of exploiting the inherent parallelism of an algorithm without the

necessity for the programmer to specify where the parallelism is to occur.

As the goal of this thesis was to determine if SISAL, a functional language,

could be utilized on a distributed system, specifically a SUN Network, the

discussion would not be complete without introducing the ECE Department's

SUN Network. Chapter IV discusses loosely coupled distributed systems in

general, and the SUN Network in particular.
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The SISAL Language is introduced in Chapter V. An introduction to the

Optimizing SISAL Compiler (OSC) and how it operates leads into a discussion of

the research. The ultimate answer to the research lies in the application of the

OSC to the distributed Network of SUN Workstations. This is followed by the

conclusions formulated by the author in Chapter VI, as well as some insight

towards where this study could be further developed.
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II. PARALLEL COMPUTING AND THE DATAFLOW APPROACH

A. PARALLELISM IN SOFTWARE

Within any software developed, there are two types of parallelism possible.

The first, or regular parallelism, is that which occurs when a common set of

operations, either simple or complex, is applied to many separate sets of data. An

example of this type of parallelism can be found in the execution of WHILE-DO

Loops, or FOR Loops. The second type of parallelism, known as irregular

parallelism, is found when different operations, again simple or complex, are

applied to either common or separate sets of data. This type of parallelism is

demonstrated in the following block of assignment statements:

A:= E-G;
B:=H*Z;
C:=E*H+F;
D:=E+G;

Hardware schemes that exploit the first type of parallelism are known as single-

instruction-stream, multiple-data-stream (SIMD) systems, and those that exploit

the second type of parallelism are called multiple-instruction-stream, multiple-

data-stream (MIMD) systems. [Ref. 1]

The construction of parallel computers that exploit regular parallelism is

fairly commonplace. However, it has proven to be surprisingly difficult to find

software, or programs, that will provide sufficient parallelism of the desired nature

on a continuous basis. Hence, it has been found that applications execute with
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varying degrees of speed with regular parallel expressions being executed more

rapidly, and the other sections being executed more slowly. Since the slower

sections tend to dominate the overall performance improvement, for the most

part, the improvement is only a small fraction of that originally intended.

Although few systems have been developed to exploit irregular parallelism,

those mechanisms that do achieve this task are also capable of handling regular

parallelism. It is in this area though, that much research is being conducted.

Parallelism at the process level, and implemented on shared-memory, or message

passing processors have been developed, and use programming languages like

Concurrent Pascal, Modula, etc. [Ref. 1] Dataflow systems tend to exploit

irregular parallelism at a lower level, a level which approximates the conventional

machine code level.

B. DATAFLOW NOTATION, AND PROGRAMS AS GRAPHS

Regardless of the nature of parallelism to be exploited, it is of key

importance to provide an effective notation to express the potential for

parallelism programs in any system developed. The following development of

notation for instruction-level irregular parallelism is as described in Reference 1.

This is derived from the examination of the nature of the inherent parallelism

found in the small segment of software code that follows:

L:= I1 *2;
M 13 * 14;
N := 15 * 16;
K:=L M*N;
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This code multiplies the variables I1, 12, 13, 14, 15, and 16, and places the result in

the variable K. The potential software parallelism can be found only by

discarding the traditional view of a program. Instead of viewing a program as a

list of instructions to manipulate data in fixed storage locations in a defined

sequence, one must concentrate on the role the individual storage locations play

as they temporarily hold data values that pass between operations in the program.

This data dependency can then be described graphically as discussed below.

1. Data Dependence Graphs

The construction of data dependence graphs for a program provides a

different view of the combination of data with operators. Optimizing compilers

that are commonly used in conventional machines provide algorithms for this task.

By drawing a series of arrows within the program segment above, one for each

variable, with the head of the arrow showing where the variable is consumed and

the tail showing where the variable is assigned, we obtain the graph shown in

Figure 1.
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inputs

FI1 12 13 14 15 161

L I = 12

-M 13 *k14

N = 15 *16

111K = L*M*N

K
result

Figure 1. Traditional Sequential Approach to Multiplication of Six Variables.
(From Ref. 1)
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By rearranging the alignment of the diagram so that it shows potential

concurrency across the page, we obtain the graph shown in Figure 2.

inputs

II1 12 13 14 5 165

IIL= 11 *12 M 10 13F 4 N = 15 16

K L LM*N

K
L'J

result
Figure 2. Concurrency Inherent in Six Variable Multiplication. (From Ref. 1)

As it is the goal to show that the inherent parallelism is only

dependent on the data, elimination of the variable names within the structure of

the graph yields Figure 3. The variable names are left in this graph for ease in

readability by providing a simplified description of the expression to be computed.
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I1 12 13 14 15 I1

K

Figure 3. A Simple Statement Level Data Dependence Graph. (From Ref. 1)

The graph in Figure 3 is a final version of a simple statement-level

data dependence graph. Not only does it retain the meaning of the original

program block, it also shows the potential parallelism and enforced sequence in a

two-dimensional format. However, Figure 3 does not fully illustrate all of the

parallelism available for exploitation by instruction-level parallel hardware. In

order to implement the algorithm shown in Figure 3, the availability of a system

capable of multiplying three values together would be required.
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Going on the assumption that the hardware implementation for a

dataflow computer will use an instruction level commonly found in 16-bit

minicomputers with extended arithmetic capabilities, an additional branch is

required to eliminate the need for a three-value multiplier. This can be achieved

by using a two-value multiplier to evaluate the variables L and M, and passing this

result to a two-value multiplier along with the variable N in order to obtain the

result K. It can also be achieved by passing the variable L along with the result

of multiplying the variables M and N to obtain the result K. The same result will

be obtained with either method.

The resultant graph shown in Figure 4 is a complete description of the

available parallelism for the instruction block, using only two-value multipliers as

discussed in the preceding paragraph. Also in Figure 4, each multiply instruction

has been given an identification number. This notation is used to describe how

all potentially concurrent instructions may execute simultaneously. From the

sequential point of view, the order of multiplications would be (from Figure 4)

{1}, (2), (3), {4}, and (5); thereby producing the result in five multiplication

times. However, the result may be obtained in as little as three multiplication

times if sufficient processors are available. With two processors available, the

order of multiplications would be {1,2}, (3,4), and {5}. With three processors

available, the order of multiplication would be {1,2,3}, {4}, and {5}. Due to the

dependency of step four on the results from steps one and two, and the

10



dependency of step five on steps three and four, the final result will require a

minimum of three multiplication times to be calculated.

I1 12 13 14 15 16

1:2 3:

L• M

4: N

K

Figure 4. Data Dependence Graph Displaying Parallelism in the Multiplication
of Six Variables. (From Ref. 1)

The key result determined from looking at Figure 4 is that this graph

shows how the instructions are dependent on the data As discussed in the

preceding paragraph, the execution of step four is dependant upon the results

determined in the execution of steps one and two. Thus, it would be safe to say

that it makes no sense to execute an instruction before all data required is

present. On the contrary, it shows that once an instruction has completed

executing, all other instructions awaiting its output data can be safely executed.
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Thus, Figure 4 shows that the simplest method of execution for a graph program

is to send data directly from instruction to instruction, and to allow each

instruction to execute only when it has all of the required input data. Hence, it

can be said that graph program execution is data-driven.

2. Generalized Dataflow Graphs

The dataflow graph discussed in the previous section is not a good example

of conventional computing practice. With no control structures such as

conditionals or loops, and only one arithmetic operation, it does not completely

represent what would be expected in general. This section briefly describes the

enhancements to dataflow notation that will accommodate the more general

program.

Since any form of machine instruction can be represented as a node on a

data flow graph, it would therefore follow that any instruction can be executed in

parallel with any other instruction. For this reason, graph notation is very useful

in exploiting irregular software parallelism. The simplest case, demonstrated

above, is in the evaluation of the general arithmetic expressions in which any

arithmetic machine instruction is used. Additional parallelism is apparent with

the introduction of control structures such as conditionals and loops, as well as the

inclusion of functions and structured data.

a. Conditionals

The simplest control structure is the conditional (if..then..else).

Data dependance graphs are constructed utilizing conditional dependance arcs that

12



are controlled by the runtime execution of a boolean expression. The

implementation of these arcs occurs through the use of two 'switching' machine

instructions; branch, and merge.

A branch instruction compares the data input value with the

boolean control input value. The path selected depends on whether the boolean

expression evaluates to true or not. Hence, it may be viewed as a switch,

selecting one of two possible paths depending upon the controlling expression.

A merge instruction compares the boolean control input value

with two data input values A and B. If the boolean expression evaluates to true,

the output receives data value A, and if it evaluates to false, the output receives

data value B.

As with the dyadic arithmetic instruction discussed above,

instruction execution does not occur until all required input values are present.

Also, since only one of two possible routes are selected, the other route is left

inactive during execution of the conditional statements. It should be noted that

the evaluation of the boolean expression and the selection of the proper path, can

be performed concurrently with any other machine instruction.

b. Loops

Both the branch and merge instructions described above can be

thought of as switches. These instructions are extremely powerful constructs when

used to implement graphical loops. Graphical loops allow the definition of very

13



complex computations by relatively small programs, similar to that found in

conventional loops.

The major difficulty experienced with looping constructs in

parallel computations is the possibility of simultaneous activation of reentrant

code. It is essential in practical dataflow systems to restrict the execution of an

instruction until it is known that the output path for that instruction is empty.

This requires that the paths of execution for a dataflow graph behave like first-in-

first-out queues.

Systems permitting only the sequential cyclic reentrancy just

described are known as static dataflow systems. Static dataflow systems are the

simplest implementation for reentrant graph programs. However, they do not

permit concurrent reentrancy as the loops must be reactivated in a strict sequence

only. Limited parallelism is achieved through pipelining within the cycles of a

loop, and the additional parallelism available is only achieved through the use of

functions and/or structured data.

c. Functions

By considering a function as a user defined subgraph in a

dataflow program, a subgraph that can be called from several places within the

program, it is noted that concurrent reentrancy must be required. Although it is

possible to create many copies of the machine code that represents the functioni,

and to place those copies in-line where needed, this is wasteful of instruction

storage when large functions are implemented, or when a function is called

14



several times within the program. Another fault is that this scheme implies the

inclusion of infinitely expanded program graphs if recursion is to be utilized. To

overcome these faults, the apply-exit scheme was developed. [Ref 1.]

This approach to function implementation is analogous to

conventional macro-expansion in that extra code and data space is allocated only

when called for, and then released when no longer needed. In this scheme,

concurrent reentrancy is permitted via an apply instruction. This instruction is

placed at the start of a user defined subgraph, and creates a new copy of the

subgraph each time it is called. All input paths to a subgraph activation are

gathered together and transferred to this unique new copy of the reentrant code.

An exit instruction, occurring at the end of the subgraph, collects all of the output

data from the subgraph, and transfers it back to the calling apply instruction. The

copy of the reentrant code is then destroyed. Thus, data is not required to share

code concurrently.

d Sisuded Data

Through the use of a single variable name in referring to a large

number of simple data items, compact computer programs can be written and

executed. A separate storage area can be created to hold the structures, and the

structure can be represented by a pointer when traversing the dataflow graph

paths. A specialized structure store has the responsibility of issuing these pointers,

as well as executing the read and write operations on these structures. All other

15



operations on the structures are as described in the preceding paragraphs for

single data items.

3. Graph Code Compilation

It is apparent from the previous discussions that it is possible to

generate dataflow graphs from conventional high-level programming languages.

The difficulty lies in the analysis algorithm. This is the tool that forms the

dataflow graphs from the conventional language, is highly complex, and requires a

long time to execute. The solution has been for researchers to develop other

languages that are easier to translate. Dataflow research projects are

concentrating on these new languages.

a. Conventional La/ ugff

The conventional language programmer accesses variables during

the program execution. It is this explicit use of storage locations that produces

possible side-effects in dataflow development. Due to the obscure expressions

used to index arrays, compile-time data dependence analysis is difficult, and

requires programmer intervention in specifying how arrays are to be accessed.

Another difficulty lies in the use of unbounded arrays and pointer arithmetic.

These language features are impossible to decipher and compile-time analysis can

never occur. It is best that these facilities of conventional languages never be

utilized in the dataflow development process.

16



b. Single-Ainment Languages

These languages allow each variable to be assigned only once

within a program. This scheme helps to eliminate the ambiguities that may arise

when reassigning values to variables. Single-assignment languages (SALs) utilize

no direct control statements, nor do they allow for sequential execution.

However, SALs do have provisions for permitting controlled reassignment of

variables used in loops, and other special cases.

The use of arrays, streams, and other data structures that can be

readily implemented in dataflow graphs are widely utilized by SALs. The use of

these structures does require strict typing and scoping rules, such as the

prohibition of all types of side-effects in the reentrant construct. These features

result in languages ideal for the syntactical description of dataflow graphs. Most

of the single-assignment languages developed are done so without reference to

dataflow execution, but may refer to other methods of execution.

C Functiona Langwues

These languages are those that have been developed without

reference to any particular means of execution. They are based on the

mathematics of functional algebra. Functional languages have no provisions for

storage states. They differ from SALs in that they have no concept of assignment.

They are referred to as zero-assignment languages in which variables are defined

instead of assigned.

17



Similar to SALs in the absence of control statements and side-

effects, functional languages are more powerful. The basis on functional algebra

permits the construction of abstract data structures and higher order functions,

thus making them more powerful than SALs. Although these two groups are not

directly equivalent, both have enough in common to make it attractive for

implementing functional languages on dataflow systems. SISAL has features of

both languages, as shall be discussed in following chapters.

4. Dataflow Graph Summary

The translation of dataflow graphs from a wide range of high-level

programming languages is very feasible. They permit data structures, functions

(with recursion included), loops, and conditional control constructs, thereby

providing a convenient notation to represent parallel computations.

18



III. PROGRAMMING AND FUNCTIONAL
LANGUAGES

A. INTRODUCTION

Based on the algebra of functions, the origin of a functional language can be

traced to the development of lambda calculus by Alonzo Church in the 1930's.

This calculus arose from the attempt to identify those functions on positive

integers that could be computed in a purely mechanical or algorithmic method.

Church proposed that these effectively calculable functions be expressed in a

simple calculus, the lambda calculus. Universally regarded as true, the lambda

calculus provides a good basis for the design of a programming language.

In the lambda calculus, functions are denoted by expressions known as

lambda expressions. As derived from Referance 1, the expression:

).x. x3 + 8

denotes the function that cubes a number and adds 8 to it when applied to that

number. It can be seen that the lambda expression is composed of two parts.

The bound variable is that part to the left of the dot, and the body is that part

located to the right of the dot. Abstraction is the process of bringing the two

halves together. Hence, the function denoted by the lam!' a expression is

abstracted from its body.

The application of the function denoted by a lambda expression occurs by

juxtaposing them with their argument. Therefore:

19



(Xx. x3 + 8)(2)

indicates the application of the denoted function to the value 2, and evaluates to

16.

Another method is for the lambda expression to appear in the argument

position. Note that in the following case the bound variable f is 'function valued':

(Xf. f(2)) Ix. x3 + 8

and once again evaluates to 16.

Both lambda expressions described above form the well formed formulas of

the lambda calculus. This calculus is then completed by the set of rules for

lambda conversion. These rules convert one lambda expression to another

without a change in the meaning of the expression. As these rules are purely

syntactical in nature, it is not necessary to understand the meaning of an

expression when applying them.

There are three rules for lambda conversion [Ref. 1]:

- Alpha rule: The name of the bound variable may be changed as long as it is
done so consistently throughout.

- Beta rule: A lambda expression of the form Q.x.M) N may be converted to
the form M[N/x]. That is, M with N substituted for x, as long as it is done
so consistently.

- Gamma rule: An expression may be converted to an abstracted function
reapplied to appropriate arguments.

The computation of a function corresponds to the application of these rules,

as they can be applied mechanically. Essentially, this is the idea of the lambda

calculus. Reduction is the term associated with the application of the beta rule.

20



The conversion of some equation A to some other equation B by only applying

the alpha and beta rules implies that A is reducible to B. An expression is in

normal form if it is no longer reducible. Normal form lambda expressions are

unique, and correspond to the res,.it of program evaluation.

The reduction of a lambda expression may follow one of several different

paths. The Church-Rosser theorem is the main theorem of the lambda calculus.

This theorem states that the order of reduction is unimportant, as all paths lead to

the same result. It is the result of these rules and theorems that make the lambda

calculus an amenable solution to the need for computational formalism.

B. FUNCTIONAL PROGRAMMING

It is not surprising that the object of a functional program is the definition of

a set of functions. However, there are fundamental differences in the functions

defined in a functional programming language, and those defined in conventional

languages in which functions can be defined (i.e., Pascal).

As discussed in Referance 1, a program written in a functional language

consists of a set of equations. These equations define functions in terms of other

functions that are simpler, or primitives to the language.

For example, consider the following definition of a maximum function:

max(x, y) := ix > y then x else y

This function is defined in terms of the well known primitives > and if-then-else.

A program which uses this defined function in the definition of another function

may have the following form:
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maxthree(u, v, w) = max(max(x, y), z)

max(x, y) := if x > y then x else y

It should be noted that there is no ordering implied. This implies that the

execution of a functional language program is accomplished by evaluating the

equations of the program as directed. This is demonstrated in the following step

by step analysis of the previous program segment to find the maximum of the

three numbers 2, 7, and 9.

maxthree(2, 7, 9)
= > max(max(2, 7), 9)
= > max(if 2 > 7 then 2 else 7, 9)
= > max(7, 9)
- > if 7 > 9 then 7 else 9
=>9

As in conventional languages, functional languages provide for recursion by

allowing functions to be defined in terms of themselves. Consider the folowing

well known definition of the factorial:

factorial(x) : = if x = = 0 then 1 else x * factorial(x-1)

This definition may also be expressed by the following set of equations:

factorial(0) := 1
factorial(x + 1) = (x + 1) * factorial(x)

Once again, ordering is not of importance. This requirement is obtained by

ensuring that at most one equation applies for any value of input.
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1. Qualified Expressions

An important property of functional languages is that within a given

context, the same expression evaluates to the same result. This is required due

to occurrence of repeated subexpressions on the right hand side of equations.

The following expression demonstrates this phenomena:

g(x):= ifx == 0 then 0
else x + (g(x/2) * g(x/2))

There is no change in the meaning of the program using this method of

expression. However, problems could arise in the efficiency of program execution

if (as in this case) the repeated subexpression occurs in a recursive call.

Functional languages provide for this type of inefficiency. The use of

qualified expressions allow a programmer to name the repeated expression, and

then refer to it by that name when using it. An example found in many functional

languages is the where construct, such as:

B where y = A

In this sense, the variable named y is used to refer to the expression A throughout

the evaluation of B. Therefore, our example above would be written:

g(x) := ifx = = 0 then 0
else x + (y * y) where y = g(x/2)

It must be noted that the meaning of any expression involving the

where construct is always equivalent to the original expression when the qualified

variable is resubstituted back to the expression which it denotes. Thus, in the
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above case, the value of y does not change throughout its use. Therefore, the

where construct is not an assignment expression.

2. Higher Order Functions

The term higher order implies that within a program, the functions

themselves are passed around as data objects, similar to the passing of scaler and

lists. All realizable functional languages must have this property, thus ensuring

that all objects are treated as equals.

This implies that functional languages contain expressions that, when

evaluated, return function valued objects. An example of this is the factorial

program. In the set of equations defining the function factorial above, the

identifier factorial (which in this case is the data object) takes as its value the

factorial function.

It is this existence of the higher ordered function in a functional

language that provides for a powerful programming style. It is, therefore, possible

to define general purpose iterators that traverse a data structure, and apply

functions which are passed as parameters within the program. Provided with

enough high order functions, explicit recursions may be omitted from programs by

instantiating these functions where needed.

3. Data Structures

Within a functional language, provisions have been made to allow

handling of data structures through the use of additional functions called

constructor functions. A constructor function is not defined by a set of equations,
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it has the sole purpose of building data structures. Actually, the terms created by

constructor functions and constants (which may be viewed as unary constructor

functions) name the data structures.

The use of constructor functions allows the creation of simple data

structures. Once a structure has been defined, the programmer would then write

equations defining a function over the structure, just as if writing equations to

define a function on a scaler.

A modem functional language would have provisions for the three concepts

just described, as well as have an ability to allow for set expressions, data typing,

modular structures, etc. Those features described above would be considered the

main features necessary for a functional language. The basic concepts developed

from these features, and the consistent employment of those concepts, form

powerful notations that characterize functional languages. Once a programmer

has grasped the basic concepts of the language, learning the functional language

becomes easy. Another feature is that a functional language is deterministic in

that the same result is always obtained for a given input. As a functional

language may provide for alternative sequences of evaluation, it must produce the

same result if terminated correctly.

C. FUNCTIONAL PROGRAMMING IMPORTANCE

It is widely held that a functional language is more powerful than a

conventional language, thus allowing for simpler program construction with fewer

errors occurring in the task. Additionally, since a functional program allows for
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formal manipulation, it enables the process for program transformation, which is

the systematic derivation of efficient programs from the program specifications.

Third, it is easy to organize the parallel evaluation of a functional program. This

provides for the design of very fast, efficient, expandable, multi-processor

machines. It is these three claims that provide arguments for why a functional

language may be considered more important, with significant advantages over

conventional languages.

Since the execution of a program, written with a functional language,

depends only upon the meaning of the component subexpressions and not the

history of any computation up to the evaluation of that expression, the program

may be viewed as a static object. Thus, functional programs are referentially

transparent. As there is a clear notion of the equivalence between expressions,

one expression may be substituted for another without changing the meaning of

the whole expression in which the equivalent expressions are used. As an

example, mathematics is referentially transparent in that one may substitute the

expression (7 - 3) for the expression (4) when used in the expression (5 * 4)

without changing the whole meaning. In this case, (5 * (7 - 3)) = 20 = (5 * 4).

This demonstrates that an inherent ground rule for the notation used to write

programs must be comprehensible, and manipulable. Both of these features are

found in functional languages.

A conventional language program is written with the extensive use of

variables. The meaning of any expression that depends upon these variables will
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vary according to the history of computations using that variable prior to the

evaluation of that expression. As noted above, the use of variables in a functional

program is treated only as if defining that variable, the variable would not change

during the execution of the program.

This frees the programmer to concentrate on what the program is to do, not

how the program is to do it. In functio languages, the output of a program is

independent of the order of evaluation, whereas conventional programmers must

concentrate on the order of execution to ensure the proper result is attained.

1. Specification

The use of a functional language allows for the programmer to

prototype, or specify the algorithm prior to developing the actual program. This

process, in turn, lends toward the development of more efficient programs.

Functional languages enhance the programmers ability to design a model of the

desired program. Since the specification and the program are written with the

same notation, this allows ease in testing, or demonstration of an expected

capability.

Recall that functional languages are often viewed as a subset of a

general equational language, only a language that allows the equations to be used

as directed rewrite rules. During the development of the language, restrictions

are often placed on the notation of the language to promote efficient

interpretation of programs. Removal of some or all of these restrictions would
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allow a user to define functions using more general equations, and thereby

improve the power of a functional language for specification purposes.

2. Transformation

Once the necessary specification is established, an efficient program to

accomplish the desired task must be developed. Transformation is the concept in

which the specification is systematically manipulated to produce this program.

Thus, it is critical to define a set rules for manipulation which leave the meanings

of programs unaltered while transforming them to improve their efficiency. One

of the great advantages of functional languages is that such a set of rules can

easily be provided. Due to the inherent fact that functional languages are

referentially transparent, it allows them to be manipulated in a similar fashion to

the manipulation of mathematical forms. The ability to completely interchange

equivalent expressions, without the need for elaborate checking, lends itself to the

development of simple rules for transforming functional programs. Conventional

languages do not lend themselves to these transformation rules as freely because

they require strict adherence to methodology and program flow.

It is this formal transformation of a functional language that opens the

door to at least a partial mechanization of the process. Thus, a user may write a

structured transformation plan with high level transformation operators which will

aid him in the design of his program. What this does is provide for the semi-

automatic development of programs by utilizing the computer to aid in software
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design. Ultimately, this will lead to higher standards of accuracy, reliability, and

reproducability within the software development industry.

3. Parallel Execution of Functional Programs

Since the utilization of a function in programming allows for the

development of side-effect free code, functional languages lend themselves

remarkably well for parallel execution. Within the definition of a function, the

determination of multiple values would be indicated by a comma separated list of

expressions. These individual expressions lend themselves freely to parallel

execution by a dataflow system. Additionally, the absence of side effects allows

the subexpressions to also be computed independently.

It was observed in the development of the dataflow model discussed in

the previous chapter that the graph structure portrays itself as an attractive model

for a parallel processing system. By considering each node as a process, and each

path between nodes as a communication channel between processes, it is possible

to view a common distributed system in graphical form. An extension of this

would then be to consider a function defined within a program written in a

functional language as a process. It is apparent, then, that a functional language

lends itself freely to parallel execution of programs.

D. FUNCTIONAL LANGUAGE APPLICATIONS

The potential exists for universal applicability with a functional language. It

has the ease of programming style associated with conventional languages while

providing for modularity within the programs written. It is thought that these
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general purpose programming languages will one day replace the sequential

languages widely used today for scientific programming.

While opening the doors for providing applicative parallel languages of the

future, functional language•s are able to be utilized on today's sequential machines.

Much research within the utilization of functional languages for both sequential

and parallel processing is being carried out today.
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IV. LOOSELY COUPLED DISTRIBUTED
COMPUTER SYSTEMS

A. ARCHITECTURE

The connection of two or more computer systems via a communication link,

as is shown in Figure 5, with each system having its own operating system and

own storage facility, yields what is termed a loosely coupled multiprocessing system.

[Ref. 3] Each system within the interconnection is allowed to operate

independently, and can communicate with the other systems when necessary.

Communication between systems occurs via message passing and/or remote

procedure calls. This communication occurs at the input/output level. The

separate systems are allowed to access each other's files, and can, in some

instances, switch tasks between lightly-loaded processors to achieve some

modicum of load balancing. Logically, one may view a loosely coupled system as

a collection of processes running on various processor elements. Processes

running on the same element are allowed to communicate using shared memory,

while processes running on different elements must communicate via messages.

Local area networks (LANs) are, essentially, the backbone for loosely

coupled systems. A LAN is the interconnection of two or more computers via

coaxial cable, fiber optics, etc. while providing a means for intercommunication

between systems.
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Figure 5. A Loosely-Coupled Multiprocessing System. (After Ref. 6)

1. Objectives

What is expected by the user of a distributed computer system? The

main objectives in the development of loosely coupled systems, as derived from

Reference 3, are to provide for the following.

- Increased performance. Attained through the judicious use of the multiple
processing elements present. The user must ensure that they allow for
contentions and bottlenecks in system operation when using a shared bus,
but the overall system performance can be improved.

- Extensibility. Provides for a simpler system design, installation ease, and
overall ease in maintaining the system. It is inherent that these systems be
able to adapt to changes in the environment without overall design changes.
Modifications to the performance requirements and changes in the
functional requirements shall not affect the overall system.
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Availability. With the increased reliability of hardware it has become
possible to obtain duplicate and triplicate systems for backups. Further
research in software is also providing for improvements in its reliability and
making it more readily available. The judicious combination of these
aspects of the computer industry ensures that users will achieve a more
reliable system.

Resource sharing. The resource may be something as trivial as a peripheral
device, or something as complex as a file sharing system. These systems also
provide for the static and/or dynamic allocation of the resource to be
shared.

B. SUN NETWORK OF WORKSTATIONS

The ECE Department's Computer Network is a collection of nearly 40

stand-alone SUN workstations. These workstations are then connected together

through the use of coaxial cables, and set up into a network utilizing the TCP/IP

protocols for inter-workstation communications. Additionally, the ECE

Department's Network is built around four primary file servers, with an additional

file server dedicated to the Digital Signal Processing research areas. Each of

these file servers has a printer associated with it for use within the network.

It is this interconnection of workstations, file servers, peripherals, etc., that may be

considered as a loosely coupled multiprocessing system.

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a

common-name used to describe a multitude of data-communications protocols.

These protocols are used to organize computers and other data-communications

equipment (i.e., faxes, etc.) into computer networks. The TCP/IP incorporates

the file transfer protocol (ftp) and the TELNET protocol for inter-workstation

communications.
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When working on the net, the user will be at a dedicated "local workstation".

The user then has the ability to access files from the file server(s), from remote

workstations, and share other peripheral devices connected to the net. The user

also has the ability to use the network for over-the-network execution of

commands on a remote workstation. This ability can be achieved through the use

of rlogin, where the user remains at the local workstation, but is logged into the

remote workstation. Additionally, the SUN Operating System provides a facility

for use of the remote processor. Through the use of a remote shell command

(rsh), the operator would have the capability of using the remote workstations

processor for execution. It is this capability of the SUN Network that this

research is attempting to exploit.
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V. IMPLEMENTATION OF THE SISAL LANGUAGE ON THE ECE
NETWORK OF SUN WORKSTATIONS

A. OVERVIEW OF THE SISAL LANGUAGE

SISAL (Streams and Iterations in a Single Assignment Language) was

developed as a functional language for parallel numerical computation. The

project began in 1982 with the following goals defined in Reference 4:

- To define a general-purpose functional language capable of efficient
operation on both conventional and parallel architectures.

- To define a dataflow graph intermediate form. This intermediate form shall
be independent of language and target architecture.

- Achieve sequential and parallel execution performance competitive with
programs written in conventional languages.

The developers of the SISAL Language have been able to demonstrate the

dataflow approach to computing as a viable option outside the classic dataflow

world, and without the use of specialized hardware. The SISAL Language has

successfully operated on several different system architectures, including the Cray-

X/MP, the Manchester dataflow machine, other shared-memory multiprocessor

systems, and uniprocessor systems. As the research continues in the area of

development of the system, other experimental systems come into play.

Much of the development of the SISAL language has been directed towards

applications on uniprocessor systems (i.e., stand-alone workstations) and on

closely coupled multiprocessor systems where several processors are connected
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together, and share a common memory. It is the goal of this thesis to attempt to

exploit the parallel processing capabilities of the language, and to implement

them on a loosely coupled multiprocesbor system.

1. SISAL Program Structure

The executable entity created by SISAL consists of one or more

separately compilable compilation units. These may include a program, an

interface, and object modules. The program is the simplest entity. It may contain

some type declarations, some user defined functions, declarations that may define

other entities to be imported from other modules, and other definitions. It is

usually one of the functions within the program that is the starting point for

execution. As this is the outermost level of the executable item, function

parameters and results are handled through communication at the operating

system level.

Although a module is similar to a program, it contains no provisions

for starting execution. Modules pair with interfaces for exporting type and

function names. Thus, the module and the interface are related, with the

interface being given the same name as the module.

There are two types of interfaces. Those associated with modules as

described in the preceding paragraph provide a means for the declaration of

public functions (universal scope of use). It is through this vehicle that these

functions are allowed to be accessed by software not written in SISAL. There are

also stand-alone interfaces, which are used to declare the relationship between
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SISAL and a set of subsidiary code written in other languages. Thus, SISAL

software has access to other language libraries.

2. Data Types

The SISAL language has the ability to handle a rich set of data types.

They include the usual structured types such as records, arrays, streams and

unions, as well as the usual scaler types (integer, character, boolean, real, etc.).

The constituent components of a structured type may be of any other type.

Within the SISAL language there are occurrences where function

values are parameters to other functions. They also can be the result of

expression evaluation. Hence, a function type is allowed as a declared type as

long as the types of all parameters and results are given.

3. Functions

As a functional language, one of the most important topics to be

discussed is the function. The declaration of a function is composed by listing the

name of the function along with the names and types of formal parameters

associated with the function, and the type of the result value(s). A function then

contains one or more expressions with types corresponding to those listed in the

result types. The values utilized by the function are accessed through the formal

parameters, not through globally accessed names.

4. Expressions

The foundation of any functional programming language is the

expression. It is a single expression, or the combination of a group of expressions,
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that comprise a function definition. Within the SISAL language, the syntax for

any expression was designed for familiarity and clarity.

a. Sinpie Ex&erons and Name Scopbg

The SISAL language provides predefined functions for type

conversion. In addition to this, SISAL supports type promotion (i.e., promoting a

real value to a double-real value). Also, within SISAL, the conventional operators

are used for combining scaler arithmetic values.

Name scoping is via qualified operators as discussed in Chapter

Ill. Hence, the value of any expression may be assigned to a name using the let

construct. Once this renaming has occurred, the name may be used in place of

the expression within the scope of the definition.

b. Amfys

The SISAL language provides a rich set of operators for array

definition and manipulation. As with other languages, there is defined a useful

set of functions on arrays, and conventional arithmetic operators may be used for

element by element operations. Through the use of vector subscripts, arbitrary

sections of the array may be addressed.

C. Streams

A sequence of values produced in order by the evaluation of one

expression, and consumed in the same order by one or more other expressions is

a stream. The usual producer and consumer expression is of the for construct,

but other forms are also available. In SISAL, the ability for the consumer
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expression to start before the producer expression is finished exists, thus allowing

for the pipelined parallelism that streams make possible.

S. Selection Control

The SISAL language provides two vehicles for selection control: the if

expression and the case construct. The paths followed during an if statement are

determined by the evaluation of a boolean expression. The paths followed during

a case construct are determined by the value(s) of the selecting expression

(similar to the switch construct found in the C programming language).

6. Iteration Control

The use of the simple for construct within SISAL provides two forms

for potentially parallel and sequential evaluation. The first form distributes values

to the bodies of the construct. Each body then defines values that contribute to

the overall result. The second form generates dependencies between values

defined in one body and used in another. Either form allows for the values to be

collected within an array, in a stream, or reduced to a single value.

7. Error Handling

The management of erroneous computations occurs in SISAL through

the use of standard error processing semantics. Each SISAL type has a defined

error value associated with it. The language allows an error value to propagate

through to program completion, as well as electing to stop program execution

when an error is detected. By allowing the error to propagate through to
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completion, the language provides a facility for allowing the programmer to

search for and correct possible run time errors.

B. THE OPTIMIZING SISAL COMPILER (OSC)

Since the inception of the project in 1982, there have been several revisions

of the SISAL compiler. The research performed in this study concentrated on

Version 12.0 of the Optimizing SISAL Compiler. This compiler has been used on

the Manchester dataflow machine, the Cray X-MP, Cray Y-MP, and Cray 2.

Additionally, this SISAL compiler has been demonstrated to operate on

sequential machines, such as a SUN Workstation operating the SUN Operating

System (a derivative of UNIX).

1. Compiler Overview

The following is a brief overview of the OSC. Further discussion on

this compiler is available in Reference 5. This section introduces the phases and

subphases of the compiler. As shown in Figure 6, the separate modules used to

make up the compiler are the SISAL parser, the IF1LD, IF1OPT, IF2MEM,

IF2UP, IF2PART, and CGEN modules, as well as the host machines C compiler.

The OSC will process the source code sequentially through each of these modules

in order to generate the required executable entity.

A SISAL program is located in a file with the .SIS suffix, as written by

the programmer. The first phase of program compilation is to convert this code

into an intermediate form known as IF1. This intermediate form defines dataflow

graphs that adhere to applicative programming semantics. These graphs are
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Figure 6. Operating Structure of the Optimizing SISAL
Compiler. (After Ref. 5)

composed of simple nodes, compound nodes, graph nodes, edges, and types. The

graph nodes denote operations, the edges transmit data between the nodes, and

the types describe the data to be transmitted. Simple nodes are used to

represent arithmetic operations and array and stream manipulation while

compound nodes control one or more subgraphs that define structured expressions

(i.e., conditionals, for loops. etc.).

Prior to this first phase, the source code is run through the C

preprocessor for macro expansion and file inclusion. This allows the programmer

to configure the programs compilation, as well as define and expand macros for

inclusion in the program.
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After the intermediate form of the program has been generated, it is

sent through the IFiLD module. This module links the generated IF1 files to

form a monolithic, or complete, IF1 program for further processing. This

monolith is then read by IF1OPT which is a machine independent optimizer.

Conventional optimizations, such as function expansion, common subexpression

elimination, dead code removal, etc., occur in this module. By default, at the end

of optimization, all functions except for those presented with recursive calls, are

in-lined to form a single dataflow graph. Additionally, common subexpressions

are also eliminated in expressions located outside the conditional statement

branches.

This optimized dataflow graph is then sent to the build-in-place

analyzer IF2MEM. This analyzer will preallocate array storage allowing compile

time analysis. This permits the run time expressions to calculate their sizes. The

overall result is a semantically equivalent dataflow graph in IF2, a superset of [F1

that is not applicative in nature in that it allows operations which directly

reference and manipulate abstract memory. This IF2 program is then sent for

update in place analysis during the next phase of compilation, which occurs in the

module IF2UP. This module restructures the dataflow graph to help identify, at

compile time, those operations that may execute in place during runtime.

It is this optimized, monolithic program that is sent to the parallelizer

called IF2PART. This module will define the desired granularity of parallelism,

with analysis based on execution time estimates. This module only selects for
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expressions, and stream producers/consumers for parallel execution. Although

the cost (overhead for small functions) remains to high for actual parallelization

of the programs functions, the included for expressions and stream producers and

consumers are selected for parallel execution.

Once the program has been parallelized, the dataflow graph is then

passed to the CGEN module for the generation of C code. This code is then

compiled by the local C compiler. It is then linked with applicable library

software to provide support for parallel execution, storage management, and user

interaction. The executable output file is then produced. Once again, the C

preprocessor is invoked to allow the definition of target dependent operations and

values.

2. SISAL Runtime System

The OSC provides runtime software libraries that support the parallel

execution of SISAL programs, implements data structure operations, provides

dynamic storage allocation, and interfaces with the machine's operating system for

command line processing and input/output.

The support provided by the SISAL runtime system makes modest

demands of the host operating system. Two queues of executable tasks are

maintained and controlled by the runtime system: the ready list and the for pool.

The ready list is composed of a list of those processes ready for execution with the

next available processor.
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Execution of the SISAL executable entity created by the compiler

begins with the function main. At initiation, the formal parameters and runtime

options for the function main are read from the command line. Non-stream input

values are read during program initiation, and output results are written at

termination. Stream parameters and results are associated with files, and special

stream producing (input) and consuming (output) threads are added to the ready

list for processing during execution. Although the runtime system allocates stacks

for threads on demand, every effort is made to utilize stacks previously allocated

and no longer required. This helps to minimize stack allocation and deallocation

overhead.

a. Threads

During the initial phases of execution of a program, a command

line option specifies the number of operating system processes to instantiate for

the duration of the program. Called workers, these processes are constant in

number during execution. These workers look for work to do in the form of

threads, and the number of threads varies over the execution of the program.

A worker is held in an idle state until it is engaged in work

provided by SISAL execution. The threads assigned to a worker may be from the

ready list, a piece of a for expression, or return to the idle pool where it may be

utilized to process any storage deallocations. If there is no for expression pool

work, no ready list pool work, and no storage deallocations to process, the worker

remains in the idle pool until the next available thread arrives.
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3. Storage Management

One of the runtime system libraries included with the OSC handles

dynamic storage allocation/deallocation. This is required by the compiler to

provide support for arrays, streams, and for internal objects and stacks. This

dynamic storage allocation permits a free worker to select a pointer associated

with a block of storage from a list of free blocks, and thus minimize contention

between workers.

C. SISAL INSTALLATION ON THE SUN WORKSTATION

The OSC software was obtained by anonymous tip from Lawrence

Livermore National Laboratory. These files were placed in the /cad.exp/sisal

directory on SRVR 2 of the ECE Department's SUN network.

Included in this set of files was an executable shell script used for OSC

installation. This script asks a series of questions concerning the configuration of

the target system, and then it generates a Makefile in accordance with the

configuration specified. A copy of this script, and the Makefile created for SUN

installation, is included in Appendix A.

1. Single Processor Installation

Although it was the goal of this thesis to determine the feasibility of

parallel processing with SISAL on the SUN network, it was necessary to ensure

that there was a fully operational compiler prior to any experimentation. The

Makefile created by sinstall was run, and the compiler installed in accordance

with Reference 5.
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Included in the files obtained above, and associated with the OSC, was

a set of example programs. These files are locatt.d in the

/cad.exp/sisal/Examples directory. One of these files, sum.sis (Appendix B)

located in the /Sum subdirectory, was compiled, and executed as described in the

included README file. The output was as expected, and the data file created

indicated a processor efficiency of 98.6% during execution of the program.

Hence, it was determined that the compiler worked satisfactorily.

In order to obtain a better understanding of the SISAL Language, the

file fact.sis (Appendix B) was written and compiled. This is a small program

composed of a single function to determine the factorial of the input integer.

Once again, upon execution the output achieved was as expected.

2. Production of Multiprocessor Code with SISAL

Once it was determined that the OSC would work satisfactorily on the

SUN workstation, investigation into the multiprocessing capabilities commenced.

It was determined that a likely place to start would be to attempt to install the

compiler using the Makefile created by sinstall, only changing some of the

responses to attempt to generate code for a known parallel computer-

multiprocessor. It was determined that a Cray X-MP would be a likely candidate,

simulating two processors during the installation. It was hoped that the

differences in the installed executable code would give an indication of where in

the compiler source code to look to find where the code needed to be modified in

order to allow for the utilization of multiple processors on a SUN Network.
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The Makefile created by the sinstall shell script for the Cray X-MP,

with two processors is shown in Appendix A. As expected, this Makefile differs

significantly from that generated for the SUN. This is mainly due to the fact that

the Cray is based on the UNICOS operating system, and the SUN utilizes the

SUN OS (similar to UNIX) operating system. The primary difference lies in the

different C compilers on each host. Additionally the UNICOS operating system

has a different name for their library archiver and library randomizer.

An attempt to create a compiler capable of running on a SUN and

producing C code for a multiprocessor Cray appeared to be successtul. The

Makefile was modified to incorporate the SUN C compiler, and the SUN

operating systems library archiver and randomizer. Attempts to run this Makefile

failed initially due to C preprocessor directives in the source code for some of the

Backend Modules (IF1LD, IF2UP, etc.). These files contain a C program

(ifl(2)timer.c) for controlling the system clock in order to generate statistical data

during program execution.

One of these preprocessor directives created a timer named identifier

only if the host machine defined was not a Cray. Once again, the goal was not to

install a SISAL compiler for a Cray Machine, only to install a SISAL compiler

that would generate C code for a multiprocessor Cray while pinpointing

differences in the executable compiler code. It was thought that these differences

would pinpoint where changes should be made in the SISAL Compilers code in

order to allow multiprocessing on a SUN network. The applicable sections of the
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timer.c file preprocessor directives were commented out in order to obtain

complete installation as controlled by the Makefile. This installation appeared to

be successful.

a. Where the Reaoning Failed

At this point in the research, it was thought that there was a

complete and working SISAL compiler for the SUN workstation located in the

/cad.exp/sisal directory and a working SISAL compiler that generated C code for

a multiprocessor Cray located in the /cad.exp/sisal/craysisal directory. However,

all was not as it appeared. Attempts to test the SISAL Compiler for the Cray

were misleading. The same SISAL programs tested above (sum.sis and fact.sis)

were compiled, and tested again within the craysisal directory. Or so it was

thought.

The SISAL Compiler generates C code. Thus, it was expected

that the SUN workstations C compiler would be able to compile the code created

by the Cray installation. This was because the SUN's C compiler was identified as

the compiler utilized during installation with the Makefile. The programs above

were compiled as expected, and were then executed.

The results obtained were identical to those achieved during the

previous tests with the SISAL compiler installed for the SUN workstation. It

appeared that a successful SISAL Compiler had been created that would generate

parallel code for a SUN, by installing the SISAL Compiler as if it were being

installed on a Cray.
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Investigation into the executable code produced by both

compilers showed that the files created in both cases were identical. When

comparing the executable code for the compilers, there were differences, as would

be expected. Yet, the code produced by the different compilers was identical.

How could this be?

When the original SISAL compiler was installed, the path

statement in the system startup file was modified to inform the workstation that

there were executable programs located in the cad.exp/sisal/bin subdirectory.

When the Makefile creates the compiler code, all of the modules (IF1LD, IF2UP,

CGEN, etc.) for the compiler are placed in this subdirectory, as well as a file

named OSC. It is this file that is called to compile the SISAL program files.

Although it was thought that when working in the craysisal subdirectory the

programs were compiled with the generated Cray SISAL compiler; this was not

the case. The path statements were never modified, and when OSC was called

from within the cray SISAL subdir-actory, the original OSC compiler, and its

associated libraries were used to compile the programs. Thus, the compiled

executable files would be identical.

At this point it was determined that installing the SISAL compiler on a

SUN that generates C code for a multiprocessor Cray would not work. The path

statements were modified. The file OSC in the craysisal/bin subdirectory was

renamed OSC1. It was thus assured that this file, and the associated libraries and

module files, would be called with the execution of the SISAL compiler to
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generate C code for a Cray. Additional attempts to compile and execute the

SISAL programs using the compiler for the multiprocessor Cray failed. Although

it appeared that the Makefile installed the OSC correctly, the compiler produced

could not successfully compile and create executable entities from SISAL

programs.

It was determined that the SISAL compiler to produce Cray code

installed above was unsatisfactory. Although the Makefile gave the appearance of

producing an executable SISAL compiler, the OSC created was unsatisfactory.

The changes made in the creation of the module files caused them to produce

code which was error prone. Thus, it was determined that another path must be

taken in the research.

3. SISAL for a Multiple Processor Sun Workstation

All of the files used above to create a SISAL compiler that would

generate C code for a multiproccessor Cray were deleted. As this thought process

led to errors in reasoning, and faulty code production, all references were

removed so as not to interfere with future work.

Delving deeper into the code used to build the compiler, it was

determined that the probable areas to investigate would be in the IF2PART and

CGEN modules. These are likely candidates for producing differences in code for

multiple processors, as opposed to single processors. However, no indications of

what differences would be generated were found. In the file osc.c there is a

reference to the variable MAXPROCS which is defined as a C preprocessor

50



directive during the execution of the Makefile. This variable is passed as an

argument to the associated module files for their compilation and building. There

is no reference to this variable in either of these two module files.

During the development of the SISAL language, it was proven to be

multiprocessor capable by operating on the Manchester dataflow machine, various

Crays, etc. Thus, there is sufficient evidence to conclude that there are some

differences in the code produced for any multiprocessor machine and the code

produced for a single processor SUN workstation.

It was determined that it may be possible to install the OSC on a SUN

workstation with an added twist. The Makefile defines the variable PROCS, the

number of available processors on the host system. It uses this variable to define

the C preprocessor directive -DMAXPROCS, which is passed through each

phase of the compilers generation and installation. By modifying the Makefile

generated for SUN workstations, would it be possible to fool the compiler into

thinking that it had multiple processors to work with? The answer is yes.

In the Makefile, the variable PROCS and the preprocessor directive

defining MAXPROCS were changed from 1 to 2. This Makefile (Appendix A)

was then run to install a second OSC to determine if any differences would arise.

These files, and the associated compiler, are located in the cad.exp/sisal/sisal

directory.
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a. Tesinbg

All appearances during the installation indicated that once again

a successful compiler was created. The appropriate changes to the path

statements were made. The file OSC in the /bin subdirectory was renamed

OSC1. This ensured that the proper files and libraries would be accessed during

SISAL program compilation.

The files sum.sis and fact.sis were again compiled. There were

no compilation errors, and the executable code produced the expected results

when run. It appears that a multiple processor SISAL compiler for SUN

workstations was in the making.

One of the runtime capabilities of SISAL is to provide the

programmer with runtime information for their program. The runtime system

keeps track of the number of workers, storage allocation, CPUTime, WallTime,

etc., during program execution, and will provide this information to the

programmer upon completion of execution, if desired. An interesting point is that

the compiler developed for two processors actually attempted to keep track of the

information on both processors, even though only one processor was present.

This information lead the author to believe that yes, it was

possible for the compiler to be installed for multiple processors on a SUN

network. Although there is only one processor available, at least the code

generated by the compiler will support multiple processors.
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4. Source Code Investigation

With this new information in hand, is there a way to exploit the

parallelism? Could the code provided to generate the SISAL source compiler be

modified to utilize multiple processors? Are there facilities available from the

host operating system to aid in the achievement of the desired goal? These

questions started to arise when the above results were observed.

While looking through all of the files used to generate the compiler, a

file named p-ppp.c (Appendix C) was located in the Runtime subdirectory. This

file is compiled, and placed in the library archives for the compiler to access while

compiling SISAL programs. Using the UNIX diff command, the p-ppp.o file

created for single processor SISAL was compared with the p-ppp.o file created for

SISAL with two processors available. Although these object files show no

differences, it was thought that this file would eventually come into play.

aL The Ii Prgrm

The documentation downloaded with the SISAL programs is very

rich and complete. Every reference provided has a rich set of example programs

to be used as a basis for learning the language. These files would also provide a

strong functional data base for any SISAL installation.

One of the programs found was a parallel version to calculate pi

[Ref. 2]. This program (Appendix B) was written as ppie.sis into the

Examples/Sum/pie subdirectory for the multi-processor SISAL The goal here
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was to have a program available in the event that parallel processing abilities

were achieved.

Looking deeper into the p-ppp.c library file, it was noted that different

code was selected depending upon the host machine. It was also apparent that

this was where the multiple processors were assigned the threads from the idle

worker pool. Hence, the number of workers is dependent upon the number of

processors assigned, which is as would be expected.

The section of code specific to SUN workstations would only handle a

single processor, as would be expected. Would modifying this code in any way

expand the compilers capabilities on the SUN network? Is this where the

hardware parallelism takes place? From the preceding discussion on the SISAL

language, it is known that the parallelization of the code occurs in IF2PART. It is

also known that parallelized functional languages will operate on sequential

machines. However, where does the hardware interface occur? What is the

controlling factor for allowing machine application of parallelized code?

While the original SUN' SISAL was fur a single processor, and the

Makefile created specified this, recall that a multiple processor capable OSC had

been installed. Looking at the code for p-ppp.c it was noted that the fork process

had been utilized for the ENCORE host. Recalling that the fork process is also

available in UNIX, could this information shed any new material on the study?

The source code for p-ppp.c was edited and recompiled to implement

this change. The inclusion of the fork process was as defined in the ENCORE
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specific code with cut and paste. The object code compiled successfully, and

replaced the original object code in the library archive. This code was then tested

on the parallel version of the pi program discussed above. Although the fork

command did not function as expected, it was noted that the inclusion of the

suspected parallel code did cause a change in the observed operational

parameters in that the programs operational efficiency dropped from near 100%

to nearly 50%. In other words, the actual cpu time used by the single processor

available was half the wall time required for program execution, (i.e., the wall

time increased), whereas for single processor execution the cpu time and wall

time were nearly identical. Does this indicate that the inclusion of an additional

processor would have improved the efficiency while shortening the total real time

required for execution? Would both processors have run to achieve the

parallelism desired?

S. Code Comparison

Now that a working copy of SISAL for one and two processors was

available, it was necessary to determine where the two codes differ. The goal is

to exploit the multiple processors found in the various SUN workstations

connected together in a loosely coupled distributed network. It appeared that the

best method of determining what changes were necessary would be to compare

the codes of the two generated compilers.

The Makefiles used to create the compilers were identical with the

exception of the defined variable PROCS, and the preprocessor directive
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MAXPROCS. The directory structure for both compilers are identical. The

UNIX diff command was used to compare all files and subdirectories in both

directory trees. The only differences found were in the executable file OSC, the

object files p-dsa.o, p-init.o, p-interface.o, and the archived library libsisal.a. The

source code p-dsa.c, p-init.c, p-interface.c are included in Appendix C. The

differences between the two libsisal.a files is attributed to the fact that they are

composed by archiving the Runtime object files, of which p-dsa.o,

p-init.o and p-interface.o are a part. The differences between the executable OSC

files as well as the object files is due to the change in the preprocessor directive

MAX PROCS, which is passed as an argument during the compilation of each of

these files. No other differences were found in any of the other files located in

the directory structure of both compilers.

6. Program Execution

This phase of the research provided the most insight into what was

actually occurring during the compilation of a SISAL Program, as well as

indicating the next step. It was achieved by tracing the execution of the

executable entity produced by the compilation of ppie.sis using the multiprocessor

OSC. The source codes for the library files were modified to insert comments in

strategic locations, thereby enabling the tracing of the program.

Each time OSC is installed, be it for a single processor, or for multiple

processors, the runtime object file p-srtO.o (Appendix C) is created by compiling

p-srtO.c. This file is placed in the /bin directory instead of archived in the library
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archives. It is through this file that execution of the executable entity produced by

compiling SISAL programs occurs. This object file ensures that the execution of

any SISAL Program occurs in the same fashion, independent of the host machine.

Execution commences with the parsing of the command line to obtain

any runtime arguments (such as no data collection, no parallel execution, number

of workers to utilize, etc.). These arguments are then used to initialize the

runtime system. This includes setting up the dynamic storage allocation

capabilities of the runtime system, as well as establishing worker assignments.

Additionally, if runtime statistics are desired, the data collection facilities to

create these statistics are initialized.

Other runtime arguments are passed to SisalMain, where the execution

of the compiled SISAL program code is initiated. SisalMain contains the function

main, where execution originates. It is this function that actually calls the

function main within the SISAL Program, which has been renamed during the

creation of the executable entity. It is at this point that the programs slices are

assigned to the individual workers to allow execution.

As was expected, the initialization of the worker(s) occurs with the

execution of the object code p-ppp.o, which is located in the archived file

libsisal.a. It is this code that requires further modification in order to permit the

parallel execution of SISAL Programs on the SUN network.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

It has been demonstrated that the SISAL Language is operable on a stand-

alone SUN Workstation. It has also been demonstrated that a compiler for SUN

Workstations capable of utilizing two processors can be created, and installed on

a SUN Workstation. It is the opinion of the author that a SISAL compiler can be

produced that will operate on the distributed network of SUN Workstations.

B. RECOMMENDATIONS

As indicated at the end of the last chapter, the object code p-ppp.o initializes

and controls the workers utilized by the Optimizing SISAL Compiler. This file is

produced during the installation of the OSC, with the compilation of the file p-

ppp.c (Appendix C) which is located in the associated Runtime subdirectory.

This file generates different object code for the library, dependent upon the

host machine installed for. With no modification to the existing code for p-ppp.c,

when SISAL is compiled on a SUN workstation, it will default to a single

processor, no matter what the arguments passed during the installation. This

occurs by defining and initializing the variable p_procnum to zero at the beginning

of the SUN section of code.

Hence, as the execution of the object file continues to proceed, the dynamic

storage allocated is only based on the use of a single processor. Also, when the
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worker pool is developed, and loop slices assigned, only one processor is available

for execution.

As was discussed in the previous chapter, the author attempted to modify

this code to utilize the fork command for process execution. However, not

enough research was directed along these lines to determine whether or not this

would provide a viable vehicle for obtaining the desired objective. It may be

possible that the use of the fork process, combined with the pipe command for

interprocess communication and the exec family provided by the UNIX Operating

System, will provide the necessary facilities to achieve i-itiprocessing capabilities.

59



APPENDIX A
SISAL CONFIGURATION AND INSTALLATION FILES
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# /bin/sh

echo "* This script will ask some questions about your system and build a"
echo "* Makefile for osc (Optimizing Sisal Compiler) installation."
echo"* If you already have a file called \"Makefile\' it will be overwritten!"
echo "* For some questions. a default response is given in I."
echo "* Pressing REIURN in response to sucii a question will enable the default."
echo "* Answer yes/no questions with y or n."
echo
echo "* Press RETURN to continue."
read ans

echo .".
echo "Is this system:"
echo "1. Suu running SunOS"
echo "2. Some other sequential machine running UNIX"
echo "3. Sequent Balance running DYNIX"
echo "4. Alliant FX series running Concentrix"
echo "5. Encre Multimax running Umax"
echo "6. Sequent Symmetry running DYNIX"
echo "7. Cray Y-MP or X-MP running UNICOS"
echo "8. Cray 2 running UNICOS"
echo "9. SGI running IRIX"
echo "10. IBM RS6000 running AIX"
echo "Eater a number: [1]"
read ams

LIBM='other'

FPO="
DPO="
PAR="
GANGD="

TheFF='f77'
TheCC='cc'
TheAR='ar r'
TbeINSTALL='/bin/cp'

PROCSf'T

RHOST='-DMYUG-'
HOST2="

case "XMans" in
XJX1) VERSION='sun3';

HOST-'-DSUN';
echo "Is a 68881 floating point chip installed?";
read ans;
if [ Sans = 'y' J
then
FPO-'-f68881'
DPO-'-DF68881'

fi;;
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X2) VERSION=sunix';
HOST='-DSUTNIX;;

X3) VERSION=balane
HOST='-DBALANCE;
echo 'Enter the number of available processors";
read ans;
IPROCS=$ans;
TheFF--'fbrtan'
TheCC='cc 4i;
echo '¶Run make in parallel?";
read ans;
if [ Sans = 'y'
then

PAR='&'
fi;
echo "Is LLNL gang daemon software installed?";
read ans;
if [ Sans =Y y'Ii
then
GANGD='-DGANGD'

fi::
X4) VERSION='alliant';

HOST='-DALLIANT";
Theff-'fortran'
TheCC='fxc -w -ce -OMh;
LIBM'alliant";
echo 'Enter the number of available processors";
read ans;
PRocs=sans;;

X5) VERSION=encore';
HOST=-DENCORE;
echo "Enter the number of available processors";
read ans;
PROCsS$ans;;

X6) VERSION='symmetry';
HOST-'-DSYMNMERY;
TheFF='fortran'
TheCC='cc -i'
echo "Enter the number of available processors";
read ans;
PROCS=$ans;
echio 'lun make in parallel?";
read ans;
if [ Sans =''

then
PAR=A'&

fi;
echo "Are Weitek 1167 floating point accelerators installed?";
read ans;
if [ Sans -y'y]
dken
FPO='-f 1 67'
DPO~'-Dw1 167

fi;;
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X7) VERSION='cray';
HOST='-DCRAY;
RHOST='-DCRAYXY';
TheCC='scc';
TheFF='d77'
LIBM='cray';
TheAR='bld r'
echo 'Enter the number of available processors";
read ans;
PROCS=$=s;;

X8) VERSION='cray';
HOST='-DCRAY;
RHOST='-DCRAY2';
TleCC='scc';
TheFF='cf77'
LIBM='cray';
TheAR='bld r'
echo "Enter the number of available processors";
read ans;
PROCS=$ans;;

X9) VERSION='sgi';
LIBM="sgi";
HOST='-DSGr;
echo...0

echo "* WARNING: The Sisal run time system on the SGI uses schedctl to"
echo "* establish gang management of parallel execution and"
echo "* sysmp to bind the worker processes (Runtime/p-ppp.c)."

echo 'Enter the number of available processors";
read ans;
PROCS=$ans;;

X10) VERSION='n6600';
HOST='-DRS6000';;

*) VERSION='unknown';
HOST='-DUNKNOWN`;;

esac

if [ $RHOST = '-DCRAYXY ]
then

echo

echo "*' WARNING: The Sisal run time system on the CRAY X-MP and Y-MP"
echo uses _semck(3 1) and _semts(3 1) as well as LOCKT T."
echo " LOCKON. and LOCKOFF. assuming that the microtasking"
echo "* library will not interfere with the 2 intrinsics. If'
echo ""* this is not the case, then make approapriate changes"
echo "* to Runtimellocks.h."

- echo
fi

if [ $RHOST = '-IcRAY2']
then

echo "* WARNING: The Sisal run time system on the CRAY 2 uses _getsem"
echo "* and _csem as well as LOCKTEST. LOCKON. and LOCKOFF,"
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echo "* assuming that the microtasking library will not"
echo "* interfere with the 2 intrinsics. If this is not the"
echo "* case, then make appropriate changes to Rumtime/locksJh."
eclho

fi

if [ $VERSION = 'cray']
then

TheRANLIB='touch'
TheTIMEM="

else
TheRANLIB='touch'
echo 'Is ranlib supported? [y]"
read ans
case "XMans" in

XIXy) TkRANLIB='ranlib'
esac

TheTIMEM='-DUSE_TIMES'
echo "Is getrusage supported? [y]"
read ans
case "XMans" in
XiXy) TheTIMEM=";;
Xn) echo....

echo "* WARNING: The Sisal run time system will use TIMES to gather"
echo "* timing information during execution. On the SGI the"
echo "* HZ value is assumed to be 100. On all other machines"
echo "* it is assumed to be 60 (man times.Runtime/p-timer.c."
echo "* Backend/Iflopt/ffltimer.c)."
echo "

esac
fi;

OPr="
ROPT="
echo "Optimize the installed code? [y]"
mad ans
case "XSans" in

XiXy) OPT='-O',
ROPT='-O'
if [ $HOST = '-DCRAY' ]
then ROPT="

Orr="
fi
if [ SHOST = '-DALLIANT ]
then ROPT='-Oigv'

OFF ='-Oig'
fi;;

Xn) if [ $HOST - '-DCRAY I
then ROPT-'-h noopt'

OFr='-h noopt'
fi;;

esw
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DBX='-g'
echo "Compile for run time dbx use via \"-g\'? [n]"
read ans
case "X~as" in

XIXn) DBX="
esac

echo "Enter path to directory for executables: [/usr/local/bin]"
read BIN_PATH
if [ "X$BIN PATH" = 'X
then

BINPATH='/usr/local/bin'
fi

echo 'Enter path to man pages: [/usr/man/manl]"
read MANPATH
if [ "X$MANYATH" = X I
then

MANPATH='/usr/nan/man'
fi

echo 09°

echo "* Makeile construction in progress..."
DATE='date'
cat >Makefile <<EOF
# Makefile for SISAL
# Generated $DATE by $0.

# ****************** MACROS TO CONFIGURE MAKEFILE **
# ******************************************************************************

# DOCUMENTATION SYMOBLS: 0I = optional, 1) = pick one
# COMMAND LINE MACRO DEFINITIONS WILL OVERRIDE THOSE SHOWN HERE

# PATHS TO COMMANDS USED BY THE MAKEFILE--CHECK FOR ACCURACY
CC = $TheCC
INSTALL = $rbeINSTALL
RANLIB = $TheRANLlB
AR = $TheAR

# * HOST SYSTEM
# * HOST = -D[ ENCORE.ALLIANT.etc.I
HOST = $HOST SRHOST

# *** NUMBER OF AVAILABLE PROCESSORS IN THE HOST SYSTEM
PROCS = $PROCS

# * FLOATING POINT CHIP (FOR EXAMPLE, SUN)
# ****FPO 468881
FPO = $FPO
DPO = SDPO

# * IS GANGD TO BE USED: ONLY SUPPORTED ON BALANCE
# **** GANGD = [-DGANGD]
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GANGD = SGANGD

# SHOULD THE MAKEFILE GO IN PARALLEL: ONLY SUPPOKITED ON BALANCE

PAR $ PAR

# OPTIM[IZE THE GENERATE) ASSEMBLY CODE
# 4OPT = [-O]
OPT = OPT
ROPT = $ROPT

# COMPILE FOR RUN TIME DBX USE
# ** DBX = [-g]
DBX =$DBX

# '* ABSOUTE PATHS TO EXECUTrABLE (BIN-YATH) AND MAN PAGE INSTALLATION
# **SITES. (Ex. BINATH = /usr/local/bin. MANPATH = /us/mahn/anl)
BIN_ýPATH = $BINPfATH
MANPATH = $AMAN-YATH

# DO NOT MODIFY ANYTHING ELSE ~ **

PR = -DM[AXPROCS=SIjPROCS I
FF = $1Tl2ff )

TDEFi = BDLYATH=\S{BW-PATHJ
TDEF2 = MANPATH1=\$ MANJUATH I

LIBM =$(LIBM)

TIMEM = $ITheTIMIEM)

CCý_OPTS =\$I{HOST) \${PR) \$FJPOJ \SI DPOI \$4GANGDI \$f DBX) 'SITBIEM)

F-CCCMD = *'CC-\$ICCI \$(HOST)"
TCC-CMD = "CC=\$ICC)\S{CC-OPTS)'SIOPT)"' \ILýDEFI)" \$IL-DEF2)'\

']'AR=\{PAR)"
RCC-CM1D = "CC=\${ CC) \$fCC..OPTS I\$IROPT)""'PAR=\${ PAR)' "AR=\S{ AR I'
CCCM1D ="CC-='S{CC)'{CQ-OPTS) \$(OPT)" ¶PAR=\${PARj" "AR=\SI AR)"

BINSTALL =\$fINSTALL)
SINSTALL =\${ INSTALL)

BINSTALLX-MD ="BINSTALL='S{BINSTALL)" "BINPATH=\$fBINJ'ATH)"
SINSTALL_-CMD-="SINSTAIL=-\$fSINSTALL)" "MANPATH='SI MAN-PATH I"

#**** LOCAL (all withwit install)
local: tools fronend backend nitmem
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# **ALL
all: tools fr-ontend backend rnmtixne install

# **** FRONTEND
frontend:
cd Frontend; make local \$1fFCC-CMD 1;cd.

# ****TJOOLS
tools:
cd Tools; make local\${T -CC-CMD); cd.

# **** BACKEND
backend: ifilid iflopt if2mem ii2up if2part if2gen
if lid:
cd Backend/7f lid; make local W{CC...CMD1; cd.I.
iflopt:
cd Backend/Iflopt; make local\${CCJ-ID); cd J..I
if2mem:
Cd Bakd/fm ; make local\$(f CQ-CMDI; Cd ....
if2up:
cd Backcendll±2up; make local\$S( CCXCMD); Cd .1.
ik2part:
cd Baced/lpart; make localW'ICC...CMD); Cd..I..

cd Backend/lf2gen; make local\$I CQ-CMDI;Cd ..I..

#**** RUNTIME
rntime:
cd Rutime; make local \SIRCCCMD); cd..

#**** INSTALL
install: install-tools install-if lid install~if lopt installfif2mem \
install-f2up instaljff2part instalLif2gen install-rnmtme \
install frvutend

install tools:
cd Tools;\\
make install -i\$ILýCC-CMDI 'SI BINSTALLJ2CMDI \$ISINSTALL_,.CMDI;\\
Cd..
install jrcmtend:
Cd Frontend; make install -i\SIBINSTALL-CMDI\ 'SISNSTAILLXMDI.\
Cd..
install-iflid:
Cd Backend/IfIld; make install -i\S{BINSTALLCMI)1\S(SINSTAILLCMDJ,\\
cd..I..
instau~fflopt
Cd Backend/fflopt; make install -i\$(fBINSTALL_-CMI) I 'SISINSTALLCMD };\
cd../..
install-f~mem:
Cd Bw~acknjfmem; make install -i\SIBINSTALLCMDIj \${SINSTA1LLCMDIYA
cd ..I..
install ifup:
Cd Backed/lup. make install -i\SIBINSTA.LLCMDI)\$(SINSTALLCMDI-.\
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cd..I..
installjkOpart:
cd BwAwknd/lfpart; make install -iWSBlNSTALL_-CMI)) \$I{SINSTALL_-CMD IA
cd..I..
install A4gen:
cd Backend/lfgen; make install -i \SjBINSTALLCMI) 1 \$ SINSTALL_-CMD);1A
cd../..
install-rnmtime:
cd Rumtime;\\
make'\S(LIBM) install -i\$BINSTALL...CMD) \Sf SINSTALLCMD) -FF='Sf FF1" "-AR='Sf AR)" 'RANUI-
B=\$fRANLIB 1"A\
cd.J/..

# ** CLEAN
clean:
cd Tools; makecdean; cd..
cd FRontend; make clean; cd..
cd Backend/iflid; make clean; cd ..I..
cd Backend/Iflopt;. make clean; cd .J..
cd B cedl~e; make clean; cd J.i.
cd Backend/l±2up;. make clean, cd ../..

cd Backend/If2part; make clean. cd ....
cd Backend/If2gen. make clean; cd ..I..
cd Runtime; make clean; cd..
EOF

echo o.
echo*Makefile has been built."
echo "'Please check it over to ensure it is as you wish."
echo "* When you are satisfied, enter \"make aII'to build and install osc."

68



# Makefile for SISAL
# Generated Thu Sep 3 16:44:52 PDT 1992 by sinstall.

# **************************MA*ROS**TO*C*NFIGURE**MAKE***LE*********a**********
~ MACROS TO CONFIGUjRE MjAKEFILE

# DOCUMENTATION SYMOBLS: 1 = optional. I I = pick one
# * COMMAND LINE MACRO DEFINITIONS WILL OVERRIDE THOSE SHOWN HERE

# ** PATHS TO COMMANDS USED BY THE MAKEFILE--CHC FOR ACCURACY
CC = cC
INSTALL = /bin/cp
RANLIB = ranlib
AR =arr

# * HOST SYSTEM
# * HOST = -D{ENCORE,AILIANTretc.I
HOST = -DSUN -DMY_UGH

# *** NUMBER OF AVAILABLE PROCESSORS IN THE HOST SYSTEM

PROCS = 1

* **** FLOATING POINT CHIP (FOR EXAMPLE, SUN)
# **** FPO = -468881

FPO =
DPO=

# IS GANGD TO BE USED: ONLY SUPPORTED ON BALANCE
# * GANGD = [-DGANGD]
GANGD =

# SHOULD THE MAKEFILE GO IN PARALLEL: ONLY SUPPORTED ON BALANCE
# ***PAR=[&

PAR=

# OPTIMIZE THE GENERATED ASSEMBLY CODE
# ***OFT= [-01
OPr =-O
ROIT = -O

#* COMPILE FOR RUN TIME DBX USE
# ****DBX = ['g]
DBX=

# * ABSOLUTE PATHS TO EXECUTABLE (BINPATH) AND MAN PAGE INSTALLATION
# * SITES. (Ex. BINPATH = /usr/local/bin. MAN_PATH = /usr/man/manl)
BINPATH = /cadeexp/sisai/bin
MANPATH =-/ad.exp/sisal/man

# ***DO*** ***D NOT MODIFY ANYTHING ELSE ***********
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PR - -DMAXPROCS= I
FF = f77

T_-DEFI = BIN PATH=${BINPATH)
TDEF2 = MANPATH=$f MANYATHj

LIBM =other

TIMEM =

CC-OPTS = $( HOST) $IPR) $(FPO) $IDPO) $4 GANGD) $IDBX) S4TIMEM)

F_-CC_CMD = "CC=-$ICCI $(HOST)"
TCCCMD = "CC=${CC) $j C-OPTS) $1OPT)" $IT-DEF1)" "$ILDEF2I "PAR4S PAR)"
ftCCCMI) = CC=SI CCI $jCCO-PTS) SIROFIT' "PAR=$(PAR)" "ARS41AR)"
CC-CMD = "CC=S{ICC) ${CC-OPTS) $4 OPlI" AR=$(PAR)" "AR=S4 AR)"-

BINSTALL = $I INSTALL)
SINSTALL = $4 INSTALL)

BINSTALL_-CMD = '¶BINSTALL=$41BINSTALL) " 'MINPATH=SfIBIN..ATH)I
SINSTALLCMD= "SINSTALL=$fSINSTALL)' "MANPATH$41MAN-PATH)1"

# ** LOCAL (all without install)
local: tools fr-oitend backendl runtime

"# ** ALL
all: tools frontend backend nmtime install

# ** FRONTEND
fivotend:
cd Frontend; make local $1F...CC-CMD) cc..

# **** TOOLS
tools:
ccl Tools; make local $(l-CC-..CMD); ccl..

# **** BACKCEND
backend: if lld iflopt if2mem if2up if2part if2gen
if lld:
cd Backend/Ifilid; make local $4 CC-.CMDj); cd ....
iflopt:
cdftBckenhllopt; make local Si CC-.CMDI; ccl...

cdlBackend/If2mem; make local $4 CQCIMD); ccl..
if2up:
cdlBackend/lf2up; make. local $1 CC-.CMDI; ccl J.-
if~part:
ccl BackedlfWpart; make local $1 CC..CMD). ccl...

cdlBscedhlk~gen; make local $4 CC..CMD); cd J.L
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# **RUNTIMWE
untime:

cd Runtime; make local $1&-CC-MD1; cd..

# ** INSTALL
install: install-tools installif lid install-iflopt install~if2mem\
installjkf2up instaILlut2part instal~Li2gen install-nmdme\
install-fr-ntm

install tols:
cd Tools; \

mak istll i {TCCCMD) $IBINSTALL-CMD) $1SINSTALL..CMDJ;\
cd..
install-frcmtend:
cd Frontend; make install -i SIBINSTALL CMD) SISINSTALL-CMDI;\
cd..
install~iflld.
cd Backnd/Lflld; make install -i $4BINSTMLL CMI)) $4 SINSTALL_CMDI;\
cd..I..
installuiflopLt
cd Backend/Lflopt; make install -i $IBINSTALL_C]MI) $ISINSTALL._CMD),\
cd..I..
install if2mem:
cd Backend/If2mem; make install -i $SIBINSTALL,_CML)) $1 SINSTALL,_CMDI;

install jfup:
cd Backend/If2up; make install -i $4 BINSTALLCMD) SISINSTALL_,.CMDI.\
cd..I..
install jf2part:
Cd Backend/If2part; make install -i ${BINSTALLCMI)) $I SINSTALL_.CMD).\
cd..I..
install if2gen:
cd Backend/If2gen; make install -i $IB1NSTAL.LCMI) $1 SINSTALLCMD)-\
cd../..
install rimtime:
cd Runtime;\
make $I(UBM) install -iS{jBINSTALLCMI)) $S{SINSTALLCMI)) -FF=SjFFV'

""R=$I.AR)" "RANLIB=$(RANLIB Y";\
cd..I..

# ** CLEAN
clean:
cd Tools; make clean; cd..
Cd Frontend; make clean; Cd..
Cd BackendNIf id make clean; cd ../..
cdBackend/Ilopt; make clean; cd..I..
Cd Bw~ackndlmein; make clean, Cd.4..
Cd Backend/l2up. make clean; cd ..I..
Cd Baclond/ll2part; make clean; Cd ../..

Cd Backendilf2gen; make clean; Cd ../..

Cd Runtime; make clean; Cd.
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# Makefile for SISAL
# Generated Thu Feb 25 22:30:.16 PST 1993 by sinstall.

************************ MACROS TO CONFIGURE MAKEFILE *

# DOCUMENTATION SYMOBLS: [1 = optional. I I = pick one
# COMMAND LINE MACRO DEFINITIONS WILL OVERRIDE THOSE SHOWN HERE

"#* PATHS TO COMMANDS USED BY THE MAKEFILE--CHECK FOR ACCURACY
CC = cC
INSTALL = /bin/cp
RANLIB = touch
AR =arr

"# HOST SYSTEM
# HOST = -D{ENCORE.ALJLANT.etc.}
HOST = -DCRAY -DCRAYXY

# *** NUMBER OF AVAILABLE PROCESSORS IN THE HOST SYSTEM
PROCS = 2

# FLOATING POINT CHIP (FOR EXAMPLE. SUN)
# FPO = 468881
FPO =

DPO=

# * IS GANGD TO BE USED: ONLY SUPPORIED ON BALANCE
# GANGD = [-DGANGD]
GANGD =

#*** SHOULD THE MAKEFILE GO IN PARALLEL: ONLY SUPPORTED ON BALANCE
# ***PAR W &

PAR =

# OPTIMIZE THE GENERATED ASSEMBLY CODE
# ****OT = [-0]

ROPT =

# COMPILE FOR RUN TIME DBX USE
# DBX = [-g]
DBX=

# ABSOLUTE PATHS TO EXECUTABLE (BINPATH) AND MAN PAGE INSTALLATION
# SITES. (Ex. BINPATH = /usr/local/bin. MANATH = /usr/man/manl)
BINPATH = /cad.exp/sisal/craysisal/bin
MANPATH -. adexp/sisa!/craysisa/Man/manI

# DO NOT MODIFY ANYTHING ELSE *
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PR = -DMAXPROCS--2
FF = f77

T-DEF1 = BIN.YFATH=$f BINPATH)

TDEF2 = MANPATH=SI MAN.-IATH I

LIBM =other

TINEM =

CC-OPTS = $(HOST) ${PR) ${FPO) $fDPO) ${GANGD) ${DBXI SITIMEM)

F_-CCCMD = "CC-=$fCC) SIHOST)"
T-CCCMD = "CC=Sf CC) SICCLOPTS) $1OPrI7" 311{TDEFI)"- "$ILýDEF2)-- "PAR=SfPAR)"
R-.CCCMD = "CC=${ CC) S{CC-OFI'S) IROFTI" ¶PAR=$f PAR)" 'AR=Sf AR)"-
CC-CWvD = "CC=$ICCI S{CC-OFFS) ${OPITY' "PAR=S{PAR)" "AR=${AR)'

BINSTALL = $I INSTALL)
SINSTALL = $( INSTALL)

BINSTALL_-CMD = "BINSTALL=-$IBINSTALL)" 'BINPArH=SIBIN.YATH)"
SINSTALL_-CMD = "SINSTALL=$ISTINSTALL)' "MANPATH=${ MAN-PATH)"

# ** LOCAL (all without install)
local: tools firositend backend runtime

# *** ALL
all: tools frontend backend runtime install

# **** FRONTEND
frontend.
cd Frontend; make local S(F..CC-CMD); cd.

#**** TOOLS
tools:
cd Tools; make local SI LCC.CMD1. cd..

# **** BACKEND
backend: if lid iflopt if2mem il2up if2part if2gen
if lid:
cd Backend/If lid; make local $1CCQCMD); cd ../..
iflopt:
cd Backend/lopt;. make local $fCQ-CMD); cd ..I..
ifmem:
cd Baced/fmm; make local SI CCCMD); cd ....
if2up:
cd Backend/iup; make local $S{CC...CMD). ed J../
if2part
cd Baclwa/Ifpart make local SI CC..CMW; cd ../..
if2g=z
Cd Backnd/lf2gen;. make local $1 CCXNW I; Cd ....
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# **** RUNTAIE
rntime:
cd Runtime; make local $f RXCC-MDI; cd.

# **INSTALL
install: install-tools install-iflld install-if lopt installfif2mem\
instali-if2up instalijf0part installhif2gen installunmtime\
install-froniend

ins~all tools:
cd Tools.\
make intall-i $1 TCCCML)) $1 BINSTALLCML)) $1 SINSTALL-CMD);\
cd..
install-fr~ontend:
cd Frontend; make install -i ${BINSTALL-CMD) SI SINSTALL-CMD1;\
cd..
install-if lid:
cd Backend/If~ld; make install -i SIBINSTALL_.CML)) $ISINSTALLCMD1;\
cd ../..
install if lopt.
Cd Backendiflopt; make install -i SIBINSTALLCMD) 1$1SINSTALLCMD IN
cd..I..
instalL if2mem:
Cd Bawckn/fm ; make install -i $1 BINSTAILCLC))1 $1 SINSTALLCMD);\
cd../..
instalLif2up:
cd Backend/lf2up; make install -i $1BINSTALLX.-MDI $I SINSTALL_ MD)$A
cd..I..
install ifpart:
cd Backend/If2part; make install i $11B1NSTALL-CMID 1 $1SINSTALL_-CMD),\
cd../..
instalLif2gen:
0. Backend/If2gen; make install -i $11BINSTALLCMI)) $ISINSTAILLCMD);\
cd..I..
install~ramtime:
Cd Runtime-\
make SILIRMI install -i SIBINSTALLCML)) $1SINSTAI!1.CMD) *IFF=S{FF)" 'AR=tf AR)" "RANU-
B=$IRANLIBI";.\
cd../..

# ** CLEAN
clean:
cd Tools; make cleai. cd..
cd Frontend; make clean; Cd..
cd Backend/fflid; make clean; cd.I.
cd Bacikend/Iflopt; make clean; Cd ....
CdB -acen/I -e; make clean. Cd .1..
cd Baclzn/Jfup; make clean; Cd ../..
Cd BwAznd/It2pamt make clean; Cd .1.
Cd Backend/if2gen; make clean; Cd./.
Cd Runtime; make clean. Cd.
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# Makefile for SISAL
# Generated Wed Jan 20 11:14:00 PST 1993 by sinstall.

# ******************* MACROS TO CONFIGURE MAKEILE ********************

# * DOCUMENTATION SYMOBLS: [ = optional, I I = pick one
#*** COMMAND LINE MACRO DEFINITIONS WILL OVERRIDE THOSE SHOWN HERE

# PATHS TO COMMANDS USED BY THE MAKEFILE--CHECK FOR ACCURACY
CC = cc
INSTALL = /bin/cp
RANLIB = ranlib
AR =arr

"#'*** HOST SYSTEM
# * HOST = -D{ENCOREALUANT.etc. I
HOST = -DSUN -DMYUGH

# *** NUMBER OF AVAILABLE PROCESSORS IN THE HOST SYSTEM
PROCS = 2

# FLOATING POINT CHIP (FOR EXAMPLE, SUN)
# * FPO = -f68881
FPO =
DPO-

#'*** IS GANGD TO BE USED: ONLY SUPPORTE) ON BALANCE
# *** GANGD = [-DGANGDI
GANGD =

# * SHOULD THE MAKEFILE GO IN PARALLEL: ONLY SUPPORTED ON BALANCE
# ***PAR=[&

PAR =

# *** OPTIMIZE THE GENERATED ASSEMBLY CODE
# **OPT = [-01
OPT = -0

ROPT = -O

# * COMPILE FOR RLUN TIME DBX USE
# ****DBX=[.g]
DBX=

# ABSOLUTE PATHS TO EXECUTABLE (BINPATH) AND MAN PAGE INSTALLATION
# * SITES. (Ex. BINPATH = /usr/local/bin, MANPATH = /usr/man/manl)
BINPATH = /cadJexp/sisal/sisal/bin
MANPYATH = /cad.exp/sisal/sisal/man

# * *DO NOT MODIFY ANYTHING ELSE ************************
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PR = -DMAXPROCS=2
FF = f77

TDEFi = BIN-YATH=${BINPATHI
TDEF2 = MANPATH=${ MAN-PATH)

IJBM =other

TIM4EM =

CC-OPTS = ${HOST} $1PRJ ${FPO) ${DPO) $IGANGDI $IDBXI SITIMEMI

FýCC-CMD = "CC-=S(CCI $IHOSTI'
T_ CCM _ C$C)$COPTS} SI OPrI" "$JT7_DERlI" "$1ILDEF2)" "PAR=${PAR)"
R_CC_CMD = CC=$f CC$I CCOPTS) ${ROFITI" "PAR=S{PARJ" "AR=$IAR)"
CC_-CMD = "CC=SICCI $(CCOPrSj $1 OFIT" 'PAR=${PAR)" "AR=$(ARI"

BINSTALL =SI INSTALL I
SINSTALL = $I INSTALL)I

BINSTALL_CMD = "BINSTAULL=$IBINSTALL)" 131N_-PAIH=$IBIN.PAITHI"
SINSTALL_-CMD ="SINSTALL=$ISINSTALL}" "MANPATH=S(MAN-PATHJ1"

# ** LOCAL (all without install)
local: tools frontend backend rnmtime

#**** ALL
all: tools foimtend backend runtime install

# **** FRONTEND
frontend.
cd Frontend; make local $(F-CCCMD); cd..

# *** TOOLS
tools:
cd Tools; make local $(T-CC-CMD I; cd.

# **** BACKEND
backend: ifil~d iflopt if2mem if2up if2part if2gen
if Ild:
cd Backend/ifild; make local S(CC-CMDI; cd4.
iflopt
cd Backnd/Jflopt; make local S(CC-CMD); cd .1/..
ifmem:
cdB -ackd/If2mem; make local Sf CC=CMD); cd ../..
if2up:
cd Baclwzd/I2up; make local SI CC-CMDI; cd J..I
if2part:
cd Bacend/If2part make local SI CCXCMDI. cd ..I..
il2gen
cd Baciwndfll2gen; make local Si CC-CMD); ed J..I
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# **RUNTIME
nrfme:
cd Runtime; make local ${R..C!C-CMD); cd..

# **** INSTALL
install: install_tools install fflid install~iflopt instalLhf~siem\
instaW~if2up instalbf'2part install-OIgen install-untime\
install~frontend

install tools:
cd Tools; \
make install -i ${TCCC!MD) ${BINSTALL_-CMI)) $jSlNSTALL.,CMDJ)\
cd..
install~frontend:
cd Frontend; make install 4i $1BINSTALLCMD) $ISINSTALL-CMD);\
cd..
instalL~if ld:
cdBackend/If lid: make install -j SIBINSTALL-CMI)) ${SINSTAIILCMDj)\
cd../..
instaliiflopLt
cd Backend/Iflopt;. make install 4 $IBINSTALL_,CMI)) $jSINSTALLCWD),\
cd..I..
install if2mem:
cd Baclmndflf2mem; make install -i $1 BINSTALLCMI)) $1 SINSTALLCMD);\
cd..I..
installuif2up:
cd Backendliup; make install -i S{BINSTALLCMI)) SISINSTALLCMD).\
cd..I..
instalLif2part.
cd Backend/lf2part; make install -i SIBINSTAIL_,CMI)) $I SINSTAU.LCMD I\
cd../..
install jf2gen:
cd Backend/Jgen; make install -i $1 BJNSTALLCMI)) $1 SINSTALLCMD 1.\
cd../..
install~nntime:
cd Runtime.\
make S{LIBM) install -i S{BINSTAL_-CMDI) $SISNSTALLCMI)) "FF=SFFV'

"ARS{IAR) "RlANLIB=S(RANLIB)";\
cd..I..

# ** CLEAN
clean:
cd Tools; make clean; cd.
cd Froazemi; make clean; cd..
cd Backen/ffild; make clean; cd./.
cdBackend/lflopt; make clean. cdJ../
cd Backndll±2ie-M; make clean; cd 4..
cd Backend/i'up make ckma;cd ..I..
cd Bacluend/lfpart; make clean, Cd./.
cd Baclmnd/igen. make clean; cd ..I..
cd Runtnme; make cdean; Cd..
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APPENDIX B
EXAMPLE SISAL PROGRAMS
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%$entiy•xamplel
define examplel1

#define VALUETYPE doublereal
#define VALUE 1.ODO

function examplel( ntiteger returns VALUETYPE)
for i in ln returns value of sum VALUE end for

end function
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define Main

%Main(4) -> 4*3*2*1

function Main( -integer returns integer)
if (n <= 0) then 1 else n*Main(n-1) end if

end function
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define Main

% Main(Cycles) yields an approximation to pi using
% (4/N)*sum(j=-l.N)(l/l+xU]A2), where xU] = 0j-1/2)/N.
% See Karp and Babb, "A comparison of 12 parallel FORTRAN
% dialects," IEEE Software (September 1988): 52-67.

% Main(10000) -> 3.141591
' %

function Main ( Cycles:integer returns real)
(4.0/real(Cycles)) * for j in 1.Cycles

x := (real(j)-0.5)/real(Cycles)
returns value of sum 1.0/(1.O+x*x)
end for

end function
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APPENDIX C
SISAL RUNTIME FILES
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#include "wculdh"

static char *SharedBase;
static char *SharedMemory;
static int SharedSize;

#ifndef RS6000
extern char *mailocO;
#endif

POINT`ER SharedMalloc( NumBytes)
int NumBytes;

register char *pet1Jrnitr.

NumBytes += 50;.
NumBytes = ALIGN( int~ NumBytes)

if ( SharedSize < NumBytes )
SisalError( "SharedMalioc". "ALLOCATION SIZE TO BIG");

Returnftr = Sharedhlemory;
SharedMemory += NumBytes;
SharedSize -= NumBytes;

return( (POWINER) Reaftunr)

#ifdef ENCORE
int p..procnum = (Y
char *sbam-mallocO;

void ReleaseSharedMemoryO

void AcquireSharedM~emory( NumBytes)
int NumBytes:

SharedSize = NumBytes + 100000;.

if ( share-.malloc-init( Shmardize..-100000) 1= 0)
SisalError( "AcquireSharedMemory". "sharejnallocjniut FARME");

SharedBase = SharedMemory = share-malloc( SharedSize-40);

if ( SharedM~emory - (char *) NULL)
Sisalro("Aqiehreýmr" "share.-mallc FAILED")

SharedbMmOry m ALIGN(char*.SbaredMemory);
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void StartWorkesO
I
register int NumProcs = NumWorker;

while( --NumProcs > 0)
if ( forkO ==0)
break.

EnterWorker( p-pwcnum =NumProcs)

if ( NumProcs != 0) 1
LeaveWorkerO;.
exit( 0);

vidSo ores
I

*Sial~ut~wn= TRUE;
LeaveWorke~rO;

void AbortPuataelo
I
kifl( 0. SIGKILL)

#eadif

#if SUNIX 11 SUJN 11 RS6000
int p-procnum = 0,

void ReesSharedMemoiyO

free( Sharedflase);
I

void AcquireShared~emory( NumBytes)
int NumBytes;

SharedSize =NumBytes + 100000.

SharedBase =ShazedMemcry = malloc( SharedSize-40)

if ( SharedMemory - (char *) NULL)
Sisal~zror( "AcquireSharedMemory". "malloc FARM"Y);

SharedMemory - ALIGN(char*.Shared&emory);

void StartWorkmro
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EnterWorker( pprocnum);

void Stop Workerso
I

*Sial~ut~wn= TRUE,
LeaveWorkerO;

I

void AbmrtarallelO
I
exit( 1);
I
#endif

#ifdef ALLIANT
void Releas ardeoryo
I
free( SharedBase)

void AcquireSharedMemory( NumBytes)
minNumflytes;

SharedSize =NumBytes + 100000;,

SharedBase =ShazedMemory = malioc( SharedSize-40)

if ( SharedMemcry == (char *) NUJLL)
SisalFxror( "AcquireSharedMemory", "malioc FAILE")

SharedMemory = ALIGN(char*.SharedWemory);

void StartWorkerso

EnterWcwker( 0)

void StopWokero

*SiaShud~ow = TRUJE
IeaveWorkero;

I

void Abort~arallelO
I
kiI( 0. SIGKILL)
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#if BALANCE 11 SYMM4E[RY
extern char *shmaliocO;

void AcquireSharedMemory( NumiBytes)
int NumBytes;

SharedSize =NumBytes + 100000;

SharedBase =Sbared~lemory = sbmalloc( SharedSize-40)

if ( SharedMemory == (char *) NULL)
SisalFxror( "AcquireSharedMemory", "shmalloc FAILED")

SharedMemory = ALIGN(char*.SharedMemory);

void ReleaseSharedMemoryO
I

shfiree( SharedBase)
I

#ifdef GANGD
void StartWorkersO

register hit pID;

begin-.parallel( NumWorkers);

GElPRocIDfpu));

EnterWorker( pID).

if (pI1D 1= 0) 4
LeaveWorkerO;
end-parailelO;

void Stop WodkersO

*SisalShutdown - TRUE;
LeaveWorkerO;
end...araflelO;

void AbortParallelO

I

#else
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int p-jrocnum = 0;

void StartWorkers()

register mnt NumProcs = NumWorkers;

while( --NumProcs >0)
if ( forkO ==0)
break;

EnterWorker( p...procnum =NumProcs)

if (. NumProcs != 0)
LeaveWorkerO;
exit( 0);

void StopWodkersO
I

*Sisa1ShutDown = ThRM
LeaveWorkerO;

void AbortParallelO
I

kill( 0. SIOKILL)

#endif

#endif

#idef CRAY
intTasklnfo(10][3];
LOCK-TYPE ThieFirstdock;

void ReleaseSharedMemoxyO

free( SharedBase)

void AcqilireSharedfemory( NumBytes)
int NumBytes;

SharedSize =NumBytes + 100000.

Shared~ase =SharedMemory = malloc( SharedSize-40)

if ( SharedMemory -(char *) NULL)

SisalErrr( "AcquireShatedMemory'. 'malioc FAILED")
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SharedMemoiy = ALIGN(char*.SharedMemory);
I

mnt Processorldo

register mnt p11);
GETPROCMIDpID);
retum( jID)

static void CrayWorker( Procld)
int Procld;
I
EnterWorker( Procid)
LeaveWorkerO;

I

register int NumProcs = NumWorkers;
register inti;

MYLOCKASGN;

for ( i = 0; i < NumProcs; i++..
Tasklnfofi][O] = 3;
Tasklnfo~iI[2] = i; /* PROCESS IDENTIFIER *

for ( i = 1; i < NumProcs; i++)
TSKSTARr( Taskno[il, CrayWorker. Tasklnfo[i][2])

EnterWorker( Tasklnfo[O] [2])

void StopWorkersO

register mnt i;

*SisalShutDown T RUE;
L&AweWorkerO;.

for ( i=1; i< NuzWorkers; i++)
TSKWArT( Tasklnfolil);

void AbortParallel()
I

ERREXITO;

#endif

#ifdef SGI
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static ulock-t TbeLock;
static usptrsj *Us~andje;

void Re esShazedMemotyO

void AcquireSbaimdemory( NumBytes)
int NumBytes;

char ArenaName[501;

SharedSize = NumBytes + 100000,

sprintf( ArenaName, "Itmplsis%d", getpidO)

/* if ( (usconfig( CONFJN1TSIZ. 1000)) -1)

SisalEzrra( "AqpireShaiedMemory", "USCONFIG CONFJýff IZE FAILED";*

if ( (uscoahig( CONFý_ARENATYPE. US.SHAREDONLY )) = -1 )
Sisalfrror( "AcquireSbaredMemory", 'USCONFIG CONF...ARENATYPE FAILED");

if ( (Usdandle = usinit(ArenaName)) -= NULL)
Sisal~rror( "AcquireShatedMemory". "USINI FAILE")

if ( (ibeLock = usnewlock( UsHandle )) == (ulock t) NULL)
SmWalrro( "AcquireShaiudMemoxy". "usnewlock FAILED);

SharedBase = SharedMemrny = (char *) malloc( SharedSize-40)

if ( SharedMemcry - (char *) NULL)
Sisal~xror( "AcquireSharedMemoxy". "malloc FAILE");

Sharedhimory = ALIGN(char*.SharedMemory);

static void SgiTransfer( Procld)
int Procdd.

GetProcld - Procdd

if (NumWorkers > 1)
if ( BindParalle[Work)
if ( sysmp( MP-MUSTRUN. Procld I 1
Siafl~rror "Sgirransfer", "sysmp MP..MUSTRUN FALM")

EntesWdwke( Procld);

if ( Procld 1- 0) 1
leaveWorkezO);
_exiz( 0);
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void StartWowkersO

register int NumProcs = NumWorkers,

while( --NumProcs >O0)
if ( sproc.( SgiTransfer. PR..SADDR. NumProcs I 1

SisalError( "StartWorkers", "sproc FARME");

if (NumWorkers > 1 )
if ( schedcl( SCHEDMODE. SGS-GANG. 0) - -1)

SisalErrorf( "StartWorkers". "hdct FAILED")

Sgf~ransfer( NumProcs)

void StopWorkcersO
I
*SisaJShud~ow - TRLUE
LeaveWbrkerO;.

I

void AlxortParallelO
I
kill( 0. SIGKJOLL);

I

int MyLock(plock)
register volatile LOCK-.TYPE "'plock;

for (;
while (*plock) - 1).
uswetock(TheLock);
if (*(plork) 0)

usumsetlockcfleLock);

ma~netIock~rhedok);

int. MyUnlock(plock)
register volatile LOCK-..TYPE "'plock-
I

*plock = 0

int. Mylaitdock(plock)
regisa' volatile LOQCK-.TYPE splock;

piock m0.
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BARRiERTYPE *My~ntgrrer

barrierj- *bar;

if( (bar= newbarrier( UsHandle))= (barrier-t*) NULL)
SisalErrcor( 'myinitbarrier'. "new-barrier FAILED")

init-barrier(bar);

rturn( (BARRIERTYPE*) bar);

int MyBarrier( bar. limit)
BARRIERTYPE *bar,
imt limit;
I
barrier( (barrierj- *) bar, limit);

I
#endif
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#include "world.h"

***** SISAL Rum Tune Support Softwar
***** Parallel dynamic storage allocation section ~
I* **Author X R.R.Oldehoeft *
***** Modifier: D. C. Cann *

1* shared LOCKTYPE clock; *

#define NR..ZER0BL 1
static jut ur-zero~bi = NRZEROkBL;

suuict tp I
struct top *frwd, *bw
int size;
imtlsize;
iut Pid;
char status;
LOCKTYP lock;
I ;

struct bot J strc top Nop-ptr 1;

#define TOPSIZE SIZEOF(struct top)
#define BOTSIZE SIZ..F(sftru bot)
#define S=ZEAGS (TOPSIZE + BOTSIZE

struct bot *cdsog;
struct top *zero~bL-
struct top *Cwjhes;.

LOCK-TYPE *coaljock;

struct top *btop;

static jut xfthresh.
static ilKmasie

#ifdef DSA_-DEBUG
int dallocs =0,
int dfres m-0;
int dbyles .0
#endif

void ShutDownDsaO

#ifdef DSAJDEBUG
fjuinWf sderzz "D - (ShutDownDsa) Allocs %d Frees %d Lost Byes %ft~",

dallocs. IF PePs. dbvles)
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#dif

void InitDsa( size. xft)
int size,
int xft;

register struct top *cu *nx;
register struct hot *Cubot-t
register mnt i. inc. roumdsize;

if (NumWoirkers ==I) nr-zero b1 I;

P* MYSIMflLOCK(&clock). */
caches = (struct top*) SharedMalloc( sizeof(struct top) * X-FROCS)
P* ALLOCATE SOME EXTRA JUST TO MAKE SURE EVERY THING IS OK!! HELP :-) *
zero-b1 = (struct top*) SharedMalioc( sizec(struct top) * (nr-zerojI+5))

zb-start =(int*) SharedMalloc( sizcof(int))
*zb-sta Q,

coal~lock C LOCK-TYIPE*) SharedMalloc( Sizeof(LOCI-TYIPE));

for(i=0; kNumWorkers. i.-*)f
caches(i].size =0-
cachesl]size = 0Q
caches[iJ.frwd = Q
caches[il.bkwd = 0

xfhesh - ft >=0? xft:0;

/* Begin with an allocated bottom tag boundary (whose top part is *
P the boundary at the other end of the space!).

roundsize = AUGN(int~size);
dsog - (struct hot *) SharedMalloc( roumisize)

mxia= roundsize ~2* S=ZEAGS;

P* Surround the space with an allocated bottom tag before and an
allocated top tag after. */

btop - (struct top *)((PCMCASTrdsorg + roundsize - TOPSIZ);
btop->status -''

btop->size =l
btop->f~rwd -btop;

MY.SI~fljZM~(&(btop,->ock));
btop->bk-wd - btop;

dlsorg-xtop-ptr - btop;

P Set up the space between the boundaries as free blockos, with one of *
P the zero size blocks prxeein each one. all in a doubly line list/
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cui = (struct top *)((PCMCAST)dsorg + BOTSIZE);

inc =((int) ((PCMCAST)btop - (PCMCAST)dsorg)) nr-zero..bl;
inc O=(nc % ALIGN-SIE;

for( i = 0;. i < nrý-zero-bi - 1; i++i-)(
/* Make a free block at cu */
nx = (struct top *)((PCMCAST)caJ + inc);

cubot = (struct bot *)((PCMCAST)nx - BOTSZE);
cubot->cOP-jfr = cui;

cu->status =F;

cu->size =(int) ((PCMCAS'I)cubot - (PCMCAST)cu - TOPS=ZE;
MY_-SINITLOCK(&(cu->lock));

/* Link it between zero size blocks *
zro-bl~iI-frwd = cui;
zero-b1(iI.status = 7;
zero-bl(iJ.size -a0;

MYSINITLOCK(&(zerojKil.lock));

cu->bkwd = &(zerobllil);
cu->frwd = &(zerobl[i+ 1]);

zerobl[i+1].bkwd = cu;
cui = x
I

/* Construct last free block and link in *
cu->frwd =&(zero-bl[0]);

cu->bkwd = &(zewobl[nr-zero-bl-1D;
cu->status I F:

cubot - (struct bot *)((PCMCAST)btop - BOT7SLZE)
cubot->top..pt = cui;

cu->size = (int) (( (PCMCAS'I)btop - (PCMCASr~hu) S=ZIAGS):.

MY..SIWUJLOQC(&(cu->lock));,
zero-bl(nr..zero...bl-1J.frwd = cui;
zero..bl~nr..zero-bl-l].statns = F;
zero~bl~nrzero..bl-IJ].size - 0.
MYSIf~iTLOQ((&(zero-bl[nrjzeroi-bl-lIIlock));

zerobl[0.bkwd - cui;

P Unlock the coalescin~g lock *
MY_-SIWlJ.LOQ(coeljock);

1* Ailocase storage from the boundary tag-managed pool *
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static char *btAJo(size)
regster int size;

register struct top *cu. *pr, *back;
struct top *newtop;
char *add&
struct bot *cubot, *newbot,
int mystart.lIsize;
int PED;

Isize = size;

size = AUIGN(int~size);

GO tROCD(p]ID);

IncStorageUsed(pID.(size+SIZETAGS));
IncStorageWAnted(plD.(size));

P~ Get a free block */
if ( NumWorkers > NRZERQBL)
*zbstart = mystart = (*zbý_start +- I + p11)) % nrtzero~bl;

else
mystart = PH);

pr = &(zero...bl[ mystart 1);

back = pr.

MYSLOCK(&(Pr-Aock));

for ( ;;) (
cu - pr->frwd;

if (c -i back)
MY_StJNLOCK(&(pr->lock));
return( 0);
I

MYSLOCK(&(,cu->lock));

if( cu->size >- size)

MY-SUNLOCK((&(r->lock));
pr = cu;

if (cu->size - size <- xfthreh + S=ZEAGS)f
P Exact fit (or close enough). Unlink cui *1
pr->frwd - cu->frwd;

cu->frwd->bkwd - pr,
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cu->status =''

cu->Pld = pID;.
cu->lsize = Isize;

addr = (char *) ((PCMCAST)cu + TOPSIZE);
Jewse
I'* Split this large block to satisfy request *
cubot =(struct hot *)((P(CfCAfl')cu + cu->size + TOPSIZE);

addr =(char *)((PCMCAST)cubot - size);

newtop = (struct top *)( PMCAST)addr - TOPSIZE);
newbot = (smtnx bot *)((PCMCASThnewtop - BOTS1ZE);

/8 Reduce size of cu and make new bottom tag *
cu->size -= size + SIZEAGS;

newbot->top-ptr = cu;

1* Make tags for new allocated block *
newtop->size =size-,

newtop.>status ='A';

newtop->PId =pID;

newtop->lsize =Isize;

MYSIW-TLOCK(&(newtop->lock));

cubot->top-ptr = newtop;

MYSUNLOQC(&(pr->lock));
MY-SUNLOC2K(&(cu->lock));

return(addr);

static int btDe~llo(ptr)
register struct top *ptr;

register struct top *b1 above. *bl-below. *pr. *cu;
stnict bot 81,ot-above. *cubot:
int mystart;
int pID;

GO FROCED~pff);

hi~below - (struct top 8)((PCMCAST)ptr + ptr->size + SIZEAGS);
bot-above - (struct bot *)((PCMCAST)ptr - BOTSIZ);

/8 Become the cady coalescing process (sigh) *
MY-SLOC(coel jock);

/* Attmpt to coalesce the frve block below with this block 8



if( bLbelow != btop )I
for (..) I

MY-SLOQC(&(bLjbelow->lock));

if ( blbelow->status != F) 1
My-SUNLOCK(&(bi-below->l~ock));

goto tryabove;

pr = bi~below->bkwd;
MYS$UNLOCK(&(bLbelowv->lock));

MY-SLOCK(&(pr->lock));
if( pr->status = F && pr->firwd -= bL-below)

break:
MY-SUNLOCK(&(pr->Iock));
I

MY-SLOCK(&(bl~below->lock));
jr->frwd = bi~below->frwd;

hi_helow->f~rwd->bkwd = pr;

cubot = (struct hot *)( hi AS~bbelow + hi-below->size + TOPSIZE);
cubot->top..ptr = ptr;

ptr->size += hi~below->size + SIZETAGS;

MYSUTNLOCK(&(pr->lock));
MYSUNLOCK(&(bLbeow->Iock));
I

tryabovre:

/* Attempt to coalesce with the block above *
if (hot-.ahove != dsosg)

for' (;;) I
bL-above, = hot-ahove->top-pwr

MY..SLOCK(&(hlabo~ve->lock));.
if( (PCMCAST~ptr =- ((PCMCAST)bLabove + hi~above->size + SIZEAGS))

break;
MY..SUNLOCK(&(hL~above->Iock));

if ( bi..above->status =- IF) I
bL-above->size, +- ptr->size + SIZETAGS;

cubot = (struict hot *)((PQACAST)ptr + ptr->size + TOPSIZE);
cubot->toppitr - bLahove;

MY-.SUNLOQC(&(b1-ahve-,.Iock));
MY...SLNLOCK(couljock);
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1* Report new block size *
feturn;

MYSUNLOCKM(&(&above-Aock));

/* Cannot mberge. Add this block to the fr-ee list *
MY-SUNLOCK(coaljock):

if ( NumWorkers > NRZERO..BL)
*zb start = mystart - (*zb-start + 1 + PH)) % nr-zero~bl;

else
mystart = PHD;

pr = &(zexo...bl( mystart 1).
MY-SLOCK(&(pr->lock));

cui = pr->frwd;

if ( pr != cui)

MY..SLOCK(&(cu->loc~k)):

pr->frwd = ptr;

ptr->bkwd = pr.
ptr->frwd = cui;
ptr->status = IF;

cu->bkwd = ptr;

MYSUNLOCK(&(pr-lock));

if ( pr 1= cu )
MYSIJNLOCK(&(cu->lock));

/' Remai blocks foim cache p to die boundary tag pool *

static nt, OldZap(p)
stucL (op *P;

I
strict top *q;

Widef DSADEBUG
fprintf( stderr, '1)- IN OkdZAPI I W)

#endif

do (
for (q -p->bkwd.q I-O(%q -p->bkwd) I

p->bkwd = q->bkwd,
btDeAlloc(q);
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qnp-
p = p->frwd;
btdeAlloc(q);

while( pOn 0);

POiNTE Alloc(siMe)
register fit size;

register struct top *cu. *pr. *ptr*
register char *addr;
int pED;

GETPRocID(pID);
pr = &caches[pI]DJ;

P Search for a block of exactly the right size. *1
for (cu - pr->frwd; cu I=0-. cu = cu->frwd )I
if (cu->Lsize - size)
if (cu->bkwd = f

addr - (char *X(PCMCST1' + TOPSIZE);
#ifdef DSADEBUG
cu->status =WA;

P* fPiini( stderr, "ALLOCATION %x We'", addr. size);*
dbytes += size;

pr->frwd = cu->frwd.
return( (POINTE) addr);
I

P There are at least two blocks this size. ~
addr = (char *)((PCMCASTh(cu->bkwd) + TOPSIZE);

#ifdef DSADEBUG
cu->bkwd->sausm =W
P~ fprintf( stderr, "ALLOCATION %x We~", an&r size);, *t
daUocs44;
dbytes +- size;
#endif

cu-,bkwd - cu->bkwd->bkwd.
return(T(OINTER) addr);

aftr - btAiloc( size)

if ( addr In 0) 1
#ifdef DSAJ)EBUG
P fprint( szderr. "ALLOCATION %x %dc". aftr. size);.*
daliocs+4.
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dbytes += size;
#endif

return( (POINTE) addr)
I

/* flush the cache into boundary tag system. NOTE: ALL THE CACHES.,*
J* AND NOT JUST THIS ONE. SHOUILD BE FLUSHED.,*
DsaHelpO;

I* try boundary tag system one more time *
addr - btAlloc( size);

if (addr!=O0) 1
#ifdef DSADEBUG
I* fprintf( siderr. "AL.LOCATION %x %~ni". addck size); *
dallocs4+-e
dbytes += size;
#endif

return( (PORINTE) W&r)

SisalErrcr( "Ailoc", "ALLOCATION FAILURE: increase -ds value");

/* "Shape up" the dsa system in a last ditch attempt to avoid deadlock */
/* on data memory.

int DsaldpO

register int pID;

GETPROCID(pID);

IncDsd~elp(pID);

if (caches~pID1.frwd !=0)
OldZp(cwcles[pID].frwd);
cac~heslpIDI~frwd = 0Q.

I

void DeA~locToBt( x)

btDeWloc( (stnuct top *)((PCMCAST)x - TOPSIZE))
I

void DeAlloc( x)
POINTERx;

register itruct top *pr- *cu. *ptr;
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register imt size;
register int p11);

#ifdef DSA.-)EBUG
if ( x == NULL ) Sisalfinor( 'DeAlloc". "NULL POINER ON DeAlloc!!!")
#endif

ptr =(struct top *)((PCMCAST)x - TOPSIZE);

size =ptr->Isize;

#ifdef DSADEBUG
if (ptr->status != ' ) Sisalffror( DeAlloc". "MULTIPLE DEALLOCS!!');
ptr->status = 'C-.
1* fprintf( stderr. 'FREE %x %dn". x. size); *

dfrees44;
dbytes - size;
#endi

if ( Sequential)
pr = &cahes[ptr->PId];

else
GFI ROCfl~pfl));
pr = &caches[ptr->Pld =pID];

cui - pr->frwd;

for (;; ) (
if (cu -0)j
pr->frwd - ptr.
ptr->bkwd = 0;
ptr->frwd = 0.

reun

if ( cu-,'Isize - size)
ptr->bk-wd - cu->bkwd;
cu->bkwd - ptr;

I

pr 0cu;
cu = pr->frwd;
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#1include "worldii"

#define FIBREIN 1
#define FIBREOUT 2

#define GETTmp(y) (I'mp = atoi( &(argvll Argindex 1[(01)))

#define CASE_-OPTONfs) if ( argv[Argndex][s] M())

void Pasxmadne aw~. arpv
int argc;
char *argv[];

register int Argindex,
int Trap;
int Fd;
int FibreFileMode;

FibreFileMode = FBREIN;

for ( Argidex =1; Arglndex < aWgc Arghdex4-4)
if ( agv[AtglndexIl[0!=-'-) I

switch (FibreFileMode)
case FIBREIN:

OPEN( Fibreln~d. argv[Arglndex]. "r");

ca~ FIBREOUF:
OPEN( Fibre~utFd, argv[Argludex]. "w").
break.

default.
goto Argumentcfrrc

FibreFileMode4-e;
coodmine;
I

CASE OP'flN( 'g. 1) 1
CASEýOFION(W 28 2) I
CASE..OFON( s,. 3)4I

UseGss - TRUE,
contiue;

Soto Argmet-Fnw
I

CASEOP'I1N( Wx. 1)
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CASE_-OPTION( b. 2)4
BindParallelWork =FALSE,

continue;
I

80(0 ArgumenL-Ernr;

CASE.OrITON( Wb. 1)
BindParaelleWork = TRUE;
contmine;

CASE-OFTON(Y'. 1)
NoFibreOutput = TRUE;,
continue.

CASE_-OPTON( 'a, 1)
CASEOPTON(Y'. 2) 1

if ( GETý-mp( 3) < 0)
8010 Arguinent-Eno;

ArrayExpansion - Tmp;
continue;

8010 ArgmenL Error.

CASE.OYMIN( T. I)
CASELOPflON( 's,2) 1
if ( GET...Tmp( 3 ) <=-0)
80(0 ArgumentLErrcr.

LoopSlices = Tmp;
continue;

goto ArguientLEfror,
I

CASEOF11N( 'w'. I)
if ( GEITnmp( 2) <-=0)

goto Azgument..Error.

if (Tnp >MAX-PROCS)
goto0 ArgmienL-Earo

NumWbrkezi - Tmp;
continue;
I

CASE..OPTIN( Vr, 1)
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GatherPerflno = TRUE;
OPEN( PerfFd. "s.infb!". "a");
contne

CASE...OPTION( 'd. 1) I
CASE.OPTION( 's'. 2)1
if ( GEILTmp( 3) <--0)
goto ArgumentErrar.

DsaSize = Tmp;
continue;

CASE,_OPI1ON( 'x'. 2) 1
if ( GETLTmp( 3) < 0)
goto, ArgumentEffor,

Xftlhresbold = Tmp;
continue;

CASEOPTION( SO. 1) 1
FibreFilcMode++;
continue;

Soto AlWpmwnLError,

if (LoopSlices==-1)
LoopSlice a NumWarker;

else if (UseGss)
SisulEfror( "COMMAND LINE CONFLIC17". "-gss AND -Is");

Argumwnt..Efrrr
SiualFrW("HILEAL COMMAND LINE ARGUIMENT". aqgv[Aiglndexl);

static void Pr intExecutionTamesO

struct Wfrnerinfo *InfoIptr.
int Worker,
double CpuUse;
int Numlarntions,

fprintf( PaM.d" Qmuine Waiffime CpuUse'a");

#sfdof AILIANT
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#else
Numlteratiols = NumWorkers;

#endif

for ( Worker = 0; Worker < Numilterations; Worker++..
InfoPtr = &(AliWbrkerlnfb,[ Worker I)-.

if ( IfoPtr->WAllTime != 0.0)
CpuUse =InfoPtr->CpuTmie;

C'puUse 1= nfoPtr->Wallflme;

else
CpuUse = 0.0;

fprinff( PerfFd, " %8.4f %9.4f %8. lf%%\Na.
InfbPtr->CpuThne, InfbPtr->WalTime. CpuUse *100.0);

void DumpRununcImnfoO

register struc WorkerInfo *InfoPtr;
register int Worker
register double CopyInfo. ATAttenipts. ATCopies, ANoOpAttemapts;
register double Ri~uilds;
rogister double ANoOpCopies. RNoOpAttmpts. RNoOpCopies. ADataCapies.
register int StorageUsed, StorageWanted, DsaHelp;
register double Flopinfo. FlopCotintA, FlopCountL. RqoCount1L

Flopknfo = FlopCountA - FlopCoumtL - FlopCouml = 0.0.

Copylnfo w RBuilds m ATAtlempts =ATCopies = ANoOpAttempts =0.0;,
ANoOpCopies = RNoOpAttempts =RNoOpCbpies = ADataCopies =0.0;
StorageUsed =StorageWanted = Dsa~elp = 0.

for ( Worker Q0; Worker < NumWorkers; Worker++4.)
InfoPtr = &(AllWorkerlnfo[ Worker 1);

CopyInfo =- InfoPtr->Copylnfo;
FlopInfo =InfoPtr >Floplnfo;

FlopCountA 4=InfoPtr->FlopCunmtA;

FlopCountL 4= lfoPtr->FlopCountL;
FlopCoumtl +- InfoPtr->FlopCoimtI-

RBuilds 4=InfoPtr->Rfuilds;

ArAttempts +- lnfoPtr->ATAttempts;
ATopies +- InfoNt->ATCopies;
ANoOpAtteznpts +- InfbPtr->ANoOpAttmpts;
ANoOpCopies += InfoItr->ANoOpCopies;
RNoOpAtaemnpts +- Iftr->RNoOpAfttmpts;
RNoOpCopies +- InfoPtr->RNoOpCopies;
ADmatCopies +- Inf@tr->ADataCopies-.



DsaHelp += InfoPtr->DsaHelp;
StorageUsed += InfoPtr->StorageUsed;
StorageWanted +-. InfoPtr->StonagWanted-;
I

fprintf( PeriFd. 'c'a"i)
fprintf( PettFd. " Workers DsaSize ExactFit DsaHelps~n')
fprintf( PeriFd. "%9d %8db %8db %9ctNo".

NumWodcers. DsaSize. XftThreshold. DsaHelp)

if ( !UseGss ) I
fjointf( PedFd. " MemW MemU LpSliceV ArrayEx'c);
fjxintf( PefFd. "%Sdb %8db %9d %9dfn\n',
StorageWanted. StorageUsed. LoopSlices, AfrayExpansion)

Ielse I
fpuintf( Perffd. " MemW MemU GssFact ArrayExfo").
fprintf( PerFd. "%8db %8db %9d %9Mni'".
StorageWanted. StorageUsed. 1. ArrayExpansion);
I

PtintExectitionTmiesO:

if ( CopyInfo > 0.0) I
fprintf( PekF~d. '-a AtOps AtCopies")
firintf( Prffid, " AcOps AcCopkfst");
fprintf( PerfFd, " %18.Of %18.Of %18.0I %l8.0hi~e'. ATAttmpts.

ATCopies. ANoOpAttempts. ANoOpCopies )

fprinf( PerfFd.'" RCOPS Recopies");
frintf( PerfFd,' OiCarMovcs'in");
f*Wnt(PerfFd. "%18.Of %18.Of %I8.K~a'. RNoOpAtwrnts.

R.NoOpCopies. ADaftaCies

fprintf(PerfFd, " RBuilds'tn');
fjxit( Perf.d' %I B.Oft". RBuilds)
I

if ( Floplnfo > 0.0) f
fpintf( PerfFd. "o FlopCounts (ARrflHdM~C): %I8.Oft". FlopCountA);.
foritf( PtrfNd, (OGICAL): %18.0tAn. FlopCountL);
fprinif( PefFd." (InTRINSIC): %18.(ti", FlopCcmn);

fprintf( PefFd. *a");

void InitSiual=imwnO

cuShmadMemxy(DsaSime);

laitd)*a DsaSize. XftThreshold)
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InitErrorSystemO;
hnitWorke~rsO;
InitReadyListO;
InitSignaSystemO;
InitSpawnO;
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*include "worldYh

static void ConfiguimExecution( IsValue. gssValue. bWalue. xft Value. ax Value)
int Is Value;
int gss Value;
int bWahie;
nt xftValue;

int ax Value;

if ( lsValue > 0)
if (gssValue = I)

Sisal~rror( "sccuffig". "-gss AND -Is CONFLICF);

LoopShices = lsValue:

if (gssVklue- I)1
if ( LoopSlices >0)

SisalEzro.( "sccoafig". "-gss AND -Is CONFLICF);

Use~ss =TRUE;
I

if ( bWalue =1)I
BindParaflelWork - TRUE;

if (axValue >- 0)
ArryExpansion = axValue;

if ( xftValue >= 0)
XftTbreshoid = xftValue;

static void ParselateifaceArguments( wValue, dsValue, rValue)
imt wValue;
int. dsValue;.
mnt rValue,

if ( dsValue > 0)
DsaSize - di Value;

else
Sisalarr "smaWat, "UILEAL -ds VALUE");,

if ( wValue > 0 && wValue <= MAXYROCS)
NumWoftrs - wValue.

else
Sisafintrro(satart". MILEAL -w VALUE"):

if (rValue -TRUE) I
GathmiNrftflnfo w TRUE;-
OPEN( PerfFd. "s~info", "a");
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if( LoopStices =1)
LoopSlices = NwmWarkers.

#define SCONFIQFUJNCTION(x)
void x( lsValue. gssValue. bValue, xftValue. axValue)
int *IsVajije;
int *gssValue;

int *xft Value;
jint *axJlu;

figtion( *lsVah2e. *gssValue. *bValu,. *xft~aiue. *aTxna );

#define SSTARTý_FUNCTION(x)
void x( wValue. dsValue. rValue)
int*wValue;
int *dsValue;
int*rValue

ParselnterfaceArguments( *wValue, *dsjalue. *rValue )
InitSisalRunTumeO;

#define SSTOPJ-UNMrON(x)\
void xO

StopWodkersO;\
SlmtDownDsaO;\
ReleaseSharedN~emoryO;
if ( GatherPerfinfo) \

DurnpRumTirnelnfoO;\

/* C VERSIONS *
SSTARTFUJNCTIN( sstart)
SSTOPYUNCI'ON( sstop)
SCONFIGJUNCIION( sconfig)

/* FRTKRAN VERSIONS: CRAY, OTHERS *
SSTARIWFUNCTION( SSTART)
SSTOPJFUNCFION( SSTOP)

* ~SSTARf..FUNCHON( saartj
SSTPJ'UNCrMON(sawop.)
SCONFIGJVNCrION( SCONFIG)
SCONFIG.FUJNCrIlON( caconf)

#define IDDInfo( x. y. z. w)\
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register int h;\
register it Dimlnc;\
register int Infolnic;\
register int DSize = 1;\
register int Major = z[O];\
register int Mode =z(1];\
register int Mutable = w;\
z +- 3; \
switch ( Major) I

case ROWMJOR \
Infolnc = --
z =(x *)
if (Mode =--PRESERVE) U
Dimnn= -I;\

else \
Dimlnc = 1;\

break. \
case COLMAJOR:\
Infolnc =5; \
if (Mode=-PRESERVE)\

Dimlnc= 1;\
else I\

Dimlnc -1;\
y = (x- 1);\

break. \
default: \
Sisaffimroi"Mixed Language Interface", ILLEGAL ARRAY DESCRIPTOR");\

if (Dimhinc= I && x 1=IA
Mutable = FALSE, \

for 0 i =0; i <X; i+..)
y->LSize =z[UHi]-z[LLOWI: \
y->Offset =z[LLOI-z[PLO];\

y->SLow =z(SLOI; \
Y->DSize =DSize; \
y->Mutable = Mutable;\
DSize - (z[PHII-z[PLOI+1);\
y +- Dimloc; \
z +- Infolnc;\

void IntDimlnfo( roaly. Dim. DimInfo, Info)
int roaly;
int Dim;
DIMINFOP DimInfo;
mnt *Info,.

#if SUNIXK 11 ALLIANT 11 CRAY I SUN 11 SGI I RS6000
IDWnO( Dim. DimInfo. Info. Info[21 11 roaly);
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#else
lDInfo( Dim, Dimlnfo. Info, FAILSE);

#endif

void IDescriptorCheck( Dim. Info)
int Dim;
int *Info;

register int CufrentDim;
register mnt PloPhi, LUo.hi;
register int Major.

Plo =Phi =Uo = Lhi =CurrentDim 0-,

switch ( (Major = *Info))
cae ROWMAJOR:
case COLMAJOR:

break,

default
goto InfoError;

I

Info = &(Info[3]);

for ( CurrentDim = 1; CurrentDhm <= Dim; CurrentDim++)
Plo = Info(PLO];
Phi - InfoIPfil
Uo = InfoILL0];
Liii = InfofLHD;

if (Phi-Plo+l = 0)1
if (Lh~i-Llo+I != 0) goto InfoError.
cobntie;

if (Ili-U044 = 0)1
if ( Phi-Plo,+1 < 0) goto InfoError;
contin ue;

if ( 1Ji-Ulo+1 < 0) goto InfoExror;
if ( Phi-Plog-I < 0) goto Info~fror;

if (Uo < PloINLlo,> Phi )goto nfoError,
if ( Lhi < Plo, H Lhii> Phi) goto InfoError.

Info - Info+5;
I

lnfaErron.



if ( Usin~gSdbx)
SdbxManitWr SDBXJERR);.

fprintf( stdrr
'~Descriptor Info: Major--%d Dimensions;=%d Current Dimmen ion = f"
Major Dim. Curnnd~im).

fprintf( stderr '¶Descriptor Info: Plo=%/d Phi=-%d Llo=%d Lhi=%ft",
Plo.Pwolbi);

Sisalffior( "EDescriptorCheck". "HILEAL INTERFACE ARRAY DESCRiPTOR")
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#include "world.h"

mmai(mc u p~ g)
mnt azgc;
char **awg;

ParseCommandUine argc. argv ~
InitSisaiRuaThneO;

fprintf( stderr, "%s %sfc'. BANNER. VERSION);

SisaLMainArgs = ReadFibreloputsO;

StartcwokersO;
SisalMain( SisalMahLnirg);
StopWorkensO;

if (W!oFibreOutput)
WritefibreOutputs( Sisalanýg);

if ( GatherPerfinfo )
DwmpRunrimelafoO;

ShuzD~own]DsaO;

exit(O);,
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